论文部分内容阅读
针对模式分类算法不直观的问题,提出一种基于径向坐标可视化分析高维数据的方法。由最大似然原理估计高维数据的本征维数,用较少的变量结合径向坐标可视化方法对高维数据进行可视化降维分析。在径向坐标中揭示高维数据集中类别和特征间的关系,寻找基于不同特征排列顺序的最优映射,并结合多种机器学习方法对数据集进行分类。应用于UCI数据库中的6个数据集的结果表明,该方法具有较好的可视化和分类效果。