论文部分内容阅读
为提高水文预测预报精度,构建基于多项式核与高斯核混合的支持向量机(SVM),利用静电放电算法(ESDA)优化混合核SVM关键参数和混合权重系数,提出混合核ESDA-SVM枯水期月径流预测模型,并构建高斯核ESDA-SVM、多项式核ESDA-SVM及ESDA-BP作对比预测模型,以云南省某水文站枯水期1—4月月径流预测为例进行实例研究,利用实例前24 a和后10 a资料对各模型进行训练和预测。结果表明,混合核ESDA-SVM模型对实例1—4月月径流预测的平均相对误差绝对值分别为4.09%、3.32%、3.5