论文部分内容阅读
为了解决动态文本聚类中聚类中心陷于局部极值点的问题,该文提出了基于遗传算法的动态文本聚类方法.采用二进制编码方式对聚类中心进行编码、类内中的点与其类中心的欧氏距离作为适应度函数.通过遗传算子的操作对类中心进行逐步迭代,直至适应度函数收敛,得到使聚类划分效果最好的聚类中心.实验表明该方法可以克服局部极值点的问题,且聚类结果的评价指标Purity(纯度)也比较好.