论文部分内容阅读
如何培养学生的解题能力,是一个较复杂的问题。从理论上看,解题能力涉及到逻辑学、心理学、教育学等学科的问题。从内容上看,解题能力包括对应用题、文字题、计算题等各类问题处理的能力。从学生解题的行为实际看,学生解题主要存在的问题有:一是难以养成思维习惯,常常盲目解题;二是任务观点严重,解题不求灵活简洁;三是马虎草率,错误百出。心理学认为:智力的核心是思维能力。从素质教育的观点来看,发展思维、提高智力,是提高素质的重要内容。要提高学生的解题能力,首先要提高学生的智力,发展他们的思维。
下面笔者结合多年数学教学经验,从发展学生的思维角度和学生的解题实际出发,谈谈如何培养学生的解题能力。
一、一例多说、养成解题的思维习惯
语言和思维密切相关,语言是思维的外壳,也是思维的工具。语言可以促进思维的发展,反过来,良好的逻辑思维,又会引导出准确、流畅而又周密的语言。在教学实践中,不少老师只强调“怎样解题”,而忽视了“如何说题(说题意、说思路、说解法、说检验等)”。看似这是重视解题,实则这是忽略解题能力的培养。由于缺少对解题的思维习惯、思维品质的培养,学生的解题能力,只囿于题海战术、死记硬背的机械记忆中,这与当前的素质教育格格不入。
另外,从学生解题的实际表现看,学生解题的错误,一般是由于缺乏细致、周密的逻辑思考和分析。特别是当作业量稍多时,这种表现更为突出。从教师教学实际看,教师为了强化对学生解题思路的训练,往往要求学生在作业本上写出分析思路图,或画出线段图。但这项工作,对于学生来说,一方面难度比较大,另一方面因费时多,学生持久性不够,往往收效并不大。笔者认为加强课堂教学中的“说题训练”,即采用“顺逆说”、“转换说”和“辩论说”等几种训练形式,养成学生解题的思维习惯,从而培养学生的解题能力。
1.顺逆说
每解答一道应用题时,不必急于去求答案,而要让学生分别进行顺思考和逆思考,把解题思路及计划说出来。
2.转换说
对于题中某一个条件或问题,要引导学生善于运用转换的思想,说成与其内容等价的另一种表达形式,使学生加深理解,从而丰富解题方法,提高解题能力。
3.辩论说
鼓励学生有理有据的自由争辩,有利于培养学生独立思考和勇于发表不同见解的思维品质,寻找到独特的解题方法。
二、多向探索、培养解题的灵活性
求异思维是一种创造性思维。它要求学生凭借自己的知识水平能力,对某一问题从不同的角度,不同的方位去思考,创造性地解决问题。而学生的思维是以具体形象思维为主,容易产生消极的思维定势,造成一些机械思维模式,干扰解题的准确性和灵活性。有的学生常常将题中的两个数据随意连接,而忽视其逻辑意义。如“小方和小圆各有同样多的水果糖,小方吃了5粒,小圆吃了6粒,剩下的谁多?”由于受数值大小这一表象的干扰,学生的思维定势集中在“6>5”上,容易误判断为“小圆剩下的多”。为了排除学生类似的消极思维定势的干扰,在解题中,要努力创造条件,引导学生从各个角度去分析思考问题,发展学生的求异思维,使其创造性地解决问题。通常运用的方法有“一题多问”、“一题多解”和“一题多变”。
1.一题多问
同一道题,同样的条件,从不同的角度出发,可以提出不同的问题。这样,可以起到“以一当十”的教学效果。像同一道题,老师还可以从分析上多提问,从解法上多提问,从检验上多提问,进行多问启思训练,培养学习思维的灵活性。
2.一题多解
在解题时,要经常注意引导学生从不同的方面,探求解题途径,以求最佳解法。
3.一题多变
学生解题时,往往受解题动机的影响,因局部感知而干扰整体的认识。例如:“某商厦共有6层,每两层间的板梯长5米,从1楼到6楼共要走多少米?”往往由于“每两层5米”和“6层”与学生的解题动机发生共鸣,忽视了“6层只有5段间距”这一特点,而容易得出“5×6”的错解。要消除类似的干扰,就必须进行一些一题多变的训练。
通常,教学中的变条件、变问题、条件和问题的互换等,都是一题多变的好形式,但是,变题训练要掌握一个原则,就是要在学生较牢固的掌握法则、公式的基础上,进行变题形练。否则,将淡化思维定势的积极作用,不利于学生牢固地掌握知识。
三、联系对比、提高解题的准确率
为了减少学生的解题错误,提高解题的准确率,除加强估算和检验外,通常较有效的办法是要善于联系对比,让学生在比较中认识、在比较中区别、在比较中理解、在比较中提高。常用的联系比较方法有:
1.联系生活实际对比
对于一些农业生产上的株距、行距,工业上的产值、工效,商业上的成本、利润等,学生缺乏生活经验,难以产生共鸣;对于一些较大数字的四则运算,学生解答毅力不强,容易产生畏难情绪。加之,有些教师讲到应用题,便说应用题怎样重要,如何难学,上课要认真呀……说到计算题,又说怎样容易出错,计算时要怎样细心,否则……看似老师提醒学生重视,实则给学生增加了心理压力,背上了思想包袱。其实,只要把数学题与学生的生活实际联系起来进行对比,解题并不是一件很难的事情。
对于难理解的题,要增添一些与之数量关系相同,能贴近学生生活的实例,先解熟悉的题,再解生疏的题。
2.联系正误对比
有比较才有鉴别,学生解题的错误,往往错在认识不清、感知模糊、理解肤浅上,用给出正确答案(或算式)和错误答案(或算式)的对比如正误分析对比、正误解法对比等,都有利于加强学生辩证思维训练,有利于提高解题能力。通常的选择题就是很好的训练形式。
3.联系题型对比
在数学题型中,归纳起来,不外乎是概念题、计算题、文字题、应用题和图式题等几大类。在教学中,要善于把各种描述的形式,联系起来,进行训练,达到由此及彼,由里及外,融汇贯通和举一反三的效果。
培养解题能力的途径和方法很多,但无论哪种途径和方法,最根本的、相通的是离不开思维的训练。我们应着眼于学生的生活经验和实践经验,开启学生的视野,拓宽学生学习的空间,最大限度地挖掘学生的潜能,从而使学生体验数学与日常生活的密切联系,培养学生动手操作能力,才能切实提高学生的数学素养,培养数学能力。
参考文献:
[1]马忠林主编.郑君文、张恩华著.数学学习论[M].广西教育出版社.2003,1
[2]马忠林主编.胡炯涛著.数学教学论[M].广西教育出版社.1997,10
下面笔者结合多年数学教学经验,从发展学生的思维角度和学生的解题实际出发,谈谈如何培养学生的解题能力。
一、一例多说、养成解题的思维习惯
语言和思维密切相关,语言是思维的外壳,也是思维的工具。语言可以促进思维的发展,反过来,良好的逻辑思维,又会引导出准确、流畅而又周密的语言。在教学实践中,不少老师只强调“怎样解题”,而忽视了“如何说题(说题意、说思路、说解法、说检验等)”。看似这是重视解题,实则这是忽略解题能力的培养。由于缺少对解题的思维习惯、思维品质的培养,学生的解题能力,只囿于题海战术、死记硬背的机械记忆中,这与当前的素质教育格格不入。
另外,从学生解题的实际表现看,学生解题的错误,一般是由于缺乏细致、周密的逻辑思考和分析。特别是当作业量稍多时,这种表现更为突出。从教师教学实际看,教师为了强化对学生解题思路的训练,往往要求学生在作业本上写出分析思路图,或画出线段图。但这项工作,对于学生来说,一方面难度比较大,另一方面因费时多,学生持久性不够,往往收效并不大。笔者认为加强课堂教学中的“说题训练”,即采用“顺逆说”、“转换说”和“辩论说”等几种训练形式,养成学生解题的思维习惯,从而培养学生的解题能力。
1.顺逆说
每解答一道应用题时,不必急于去求答案,而要让学生分别进行顺思考和逆思考,把解题思路及计划说出来。
2.转换说
对于题中某一个条件或问题,要引导学生善于运用转换的思想,说成与其内容等价的另一种表达形式,使学生加深理解,从而丰富解题方法,提高解题能力。
3.辩论说
鼓励学生有理有据的自由争辩,有利于培养学生独立思考和勇于发表不同见解的思维品质,寻找到独特的解题方法。
二、多向探索、培养解题的灵活性
求异思维是一种创造性思维。它要求学生凭借自己的知识水平能力,对某一问题从不同的角度,不同的方位去思考,创造性地解决问题。而学生的思维是以具体形象思维为主,容易产生消极的思维定势,造成一些机械思维模式,干扰解题的准确性和灵活性。有的学生常常将题中的两个数据随意连接,而忽视其逻辑意义。如“小方和小圆各有同样多的水果糖,小方吃了5粒,小圆吃了6粒,剩下的谁多?”由于受数值大小这一表象的干扰,学生的思维定势集中在“6>5”上,容易误判断为“小圆剩下的多”。为了排除学生类似的消极思维定势的干扰,在解题中,要努力创造条件,引导学生从各个角度去分析思考问题,发展学生的求异思维,使其创造性地解决问题。通常运用的方法有“一题多问”、“一题多解”和“一题多变”。
1.一题多问
同一道题,同样的条件,从不同的角度出发,可以提出不同的问题。这样,可以起到“以一当十”的教学效果。像同一道题,老师还可以从分析上多提问,从解法上多提问,从检验上多提问,进行多问启思训练,培养学习思维的灵活性。
2.一题多解
在解题时,要经常注意引导学生从不同的方面,探求解题途径,以求最佳解法。
3.一题多变
学生解题时,往往受解题动机的影响,因局部感知而干扰整体的认识。例如:“某商厦共有6层,每两层间的板梯长5米,从1楼到6楼共要走多少米?”往往由于“每两层5米”和“6层”与学生的解题动机发生共鸣,忽视了“6层只有5段间距”这一特点,而容易得出“5×6”的错解。要消除类似的干扰,就必须进行一些一题多变的训练。
通常,教学中的变条件、变问题、条件和问题的互换等,都是一题多变的好形式,但是,变题训练要掌握一个原则,就是要在学生较牢固的掌握法则、公式的基础上,进行变题形练。否则,将淡化思维定势的积极作用,不利于学生牢固地掌握知识。
三、联系对比、提高解题的准确率
为了减少学生的解题错误,提高解题的准确率,除加强估算和检验外,通常较有效的办法是要善于联系对比,让学生在比较中认识、在比较中区别、在比较中理解、在比较中提高。常用的联系比较方法有:
1.联系生活实际对比
对于一些农业生产上的株距、行距,工业上的产值、工效,商业上的成本、利润等,学生缺乏生活经验,难以产生共鸣;对于一些较大数字的四则运算,学生解答毅力不强,容易产生畏难情绪。加之,有些教师讲到应用题,便说应用题怎样重要,如何难学,上课要认真呀……说到计算题,又说怎样容易出错,计算时要怎样细心,否则……看似老师提醒学生重视,实则给学生增加了心理压力,背上了思想包袱。其实,只要把数学题与学生的生活实际联系起来进行对比,解题并不是一件很难的事情。
对于难理解的题,要增添一些与之数量关系相同,能贴近学生生活的实例,先解熟悉的题,再解生疏的题。
2.联系正误对比
有比较才有鉴别,学生解题的错误,往往错在认识不清、感知模糊、理解肤浅上,用给出正确答案(或算式)和错误答案(或算式)的对比如正误分析对比、正误解法对比等,都有利于加强学生辩证思维训练,有利于提高解题能力。通常的选择题就是很好的训练形式。
3.联系题型对比
在数学题型中,归纳起来,不外乎是概念题、计算题、文字题、应用题和图式题等几大类。在教学中,要善于把各种描述的形式,联系起来,进行训练,达到由此及彼,由里及外,融汇贯通和举一反三的效果。
培养解题能力的途径和方法很多,但无论哪种途径和方法,最根本的、相通的是离不开思维的训练。我们应着眼于学生的生活经验和实践经验,开启学生的视野,拓宽学生学习的空间,最大限度地挖掘学生的潜能,从而使学生体验数学与日常生活的密切联系,培养学生动手操作能力,才能切实提高学生的数学素养,培养数学能力。
参考文献:
[1]马忠林主编.郑君文、张恩华著.数学学习论[M].广西教育出版社.2003,1
[2]马忠林主编.胡炯涛著.数学教学论[M].广西教育出版社.1997,10