论文部分内容阅读
背景减除法通过计算当前帧与背景模型的差来实现运动目标的检测,因此背景建模是背景减除法的关键;混合高斯模型(Gaussian mixture model,GMM)可对存在渐变及重复性运动的场景进行建模,有效的提高了在光线强度变化,物体摇摆等复杂场景下建模的准确性;但它也有其固有缺点,针对利用传统EM算法进行GMM模型参数估计时,易陷入解空间的局部最优的缺陷,采用基于最大惩罚的EM参数估计,对传统的EM算法进行改进;另外,在检测不需要满足实时性时,提出了一种基于差分进化算法的GMM参数估计法;最后把改进