论文部分内容阅读
针对现有优化算法求解旅行商问题(TSP)时容易陷入局部极值的缺点,提出一种基于粒子滤波的优化搜索算法,该算法将TSP最优路径的搜索过程看成是一个动态时变系统。阐述了利用粒子滤波求解TSP最优路径的基本思想,给出了该方法的具体实现步骤。为了增强算法跳出局部极值的能力,在采样过程中引入了遗传算法的交叉和变异操作来丰富样本的多样性。最后为了验证新算法的有效性,进行了仿真实验,结果表明基于粒子滤波的优化算法能够找到比其他优化算法更好的解。