论文部分内容阅读
现有的同步聚类方法Sync在同步过程中需要将样本中的每一个分量看作相位振子进行计算,具有较高的时间复杂度,因此在大规模数据集上聚类时具有相当大的局限性.为了解决这一问题,提出了快速自适应同步聚类方法(fast adaptive KDE-based clustering by synchronization,FAKCS).FAKCS首先引入基于压缩集密度估计和中心约束最小包含球技术的快速压缩方法对大规模数据集进行压缩,然后通过使用Davies-Bouldin指标,在压缩集上进行ε参数自适应的同步聚类,