论文部分内容阅读
针对数值天气预报模型输出的气象参数存在系统误差而导致风电场功率预测精度受到制约的问题,提出了一种基于卡尔曼滤波修正的风电场短期功率预测模型.使用卡尔曼滤波算法对数值天气预报输出的风速数据进行动态修正,并结合其他气象数据形成新的用于风电功率预测的修正气象数据集合;根据原始气象数据和修正气象数据这2个训练集分别建立了风电场功率输出的原始神经网络、修正神经网络的预测模型.经同一时间区间内的实测数据与模型分析数据的对比分析表明:通过卡尔曼滤波修正的风速数据能够很好地跟踪实际风速数据的变化趋势,平均误差与绝对平均误