论文部分内容阅读
为了提高水质指标预测的精度,提出了证据理论和蚁群神经网络相结合的组合预测方法。用蚁群神经网络作为单一模型对水质指标进行预测,再由BP、RBF网络对预测误差进行分析建模,获取每个模型的可信度。利用证据理论获取单一模型的权值,实现水质指标的组合预测。该方法克服了常规BP算法收敛速度慢、易陷入局部极值的缺陷,能有效提高预测精度。