论文部分内容阅读
结合英国建筑工业研究与情报协会(CIRIA)编写的CFRP(Carbon-Fiber-Reinforced Plastic)加固钢结构设计指导手册《Strengthening metallic structures using externally bonded fiber-reinforced polymers》与我国《钢结构设计规范》(GB 50017—2003),在原轴压钢构件理论计算的基础上,引入稳定承载力修正系数,提出了带有修正系数的CFRP加固轴心受压方钢管柱稳定承载力计算公式,并通过对1个足尺未加固长柱和6个足尺加固长柱进行了轴心受压加载试验研究,分析了CFRP纤维粘贴方向及层数等因素对试件的承载力、破坏模式和延性的影响。利用ANSYS有限元程序建立“壳-弹簧-壳”有限元模型,将有限元计算结果和公式计算值进行了对比。综合考虑各类因素影响,给出利用CFRP布纵向加固时修正系数取为1.05,先环向后纵向或环向加固时修正系数取为0.95。该研究成果为编制国家标准“钢结构加固设计规范”提供了理论和试验依据。
Combined with the guideline “Design reinforcing steel structures of externally bonded carbon fiber reinforced plastics (CFRP)” written by CIRIA, and the “Code for Design of Steel Structures” (GB 50017-2003), based on the theoretical calculation of the original axial compression steel member, the correction coefficient of stability bearing capacity was introduced and the calculation formula for the stability bearing capacity of CFRP reinforced square steel tubular columns with correction coefficient was put forward. The full-scale unsecured long columns and the six full-length reinforced long columns were tested under axial compression loading. The influence of CFRP fiber orientation and number of layers on the bearing capacity, failure modes and ductility of the specimens were analyzed. ANSYS finite element program was used to establish the “shell-spring-shell” finite element model, and the results of finite element calculation and formula calculation were compared. Considering the influence of all kinds of factors, the correction coefficient of longitudinal reinforcement with CFRP cloth is taken as 1.05, and the correction coefficient is taken as 0.95 when the former ring is longitudinally or circularly reinforced. The research results provide theoretical and experimental basis for the preparation of national standards “steel reinforcement design code ”.