金属-氧共价性增强的缺陷态高熵岩盐型氧化物用于电催化析氧

来源 :催化学报 | 被引量 : 0次 | 上传用户:winseywong
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
高熵材料可以在单一晶相中引入五种或五种以上元素以优化电子结构和配位环境,可作为一类新兴的电催化剂.本文制备了一种岩盐型高熵氧化物Mg0.2Co0.2Ni0.2Cu0.2Zn0.2O(HEO)用于催化氧析出反应(OER).由于相邻的不同金属离子晶格失配,所制备的HEO具有丰富的缺陷.此外,电负性更小的Mg和Zn元素的存在使Co/Ni-O共价性增强.得益于此,HEO在碱性条件下展现出优异的OER本征催化活性,其转换频率(TOF)在1.65 V时分别达到CoO和NiO的15和84倍.本文探究了HEO电催化性能提升机制,论证了通过合理添加低成本和低电负性元素的高熵策略在发展高效氧电催化剂方面的潜能.采用静电纺丝和热处理的方法制备了含有五种金属元素的HEO,X射线衍射(XRD)结果表明其为岩盐型晶体结构.X射线能量色散谱(EDS)和电感耦合等离子体发射光谱(ICP-OES)分析表明五种元素接近等摩尔比,且均匀分布.通过高分辨透射电子显微镜(HRTEM)发现HEO晶格中含有大量缺陷;同步辐射扩展X射线吸收精细结构(EXAFS)谱拟合数据显示HEO中Co和Ni的配位数相比CoO和NiO均有所降低,证实了缺陷的存在.此外,O 1s的X射线光电子能谱(XPS)和电子顺磁共振谱(EPR)进一步证明HEO含有大量氧缺陷.缺陷结构有利于配位不饱和的活性位点充分暴露,促进反应中间体的吸附,从而提升电催化活性.通过X射线吸收近边结构(XANES)谱分析了HEO中Co和Ni的电子结构信息.结果表明,相比CoO和NiO,HEO中Co和Ni的氧化态更低,因为HEO中电负性更低的Mg和Zn可以向O转移更多电子,使相邻的Co和Ni贡献更少电子.更高的电荷密度说明Co/Ni-O键的共价性增强,与傅里叶变换的EXAFS谱中Co/Ni-O键的键长变短相吻合.此外,Co和Ni 2p的XPS结果表明,HEO表面Co(Ⅱ)和Ni(Ⅱ)成分占比较CoO和NiO更高,也证明HEO中Co/Ni-O键具有更高的共价性.在1 M KOH中,HEO展现出优越的OER电催化性能,其达到10 mA cm-2电流密度时过电位为360 mV,明显小于CoO和NiO,且与大多数文献报道的高熵电催化剂相当.此外,其Tafel斜率、质量比活性、单位面积活性和TOF均显著优于CoO和NiO,而采用相同方法制备的Co0.5Ni0.5O则性能较差.据此可以推测HEO电催化性能提升的主要原因在于:高熵策略可以调控活性金属的电子结构,通过引入低电负性元素增强Co/Ni-O键的共价性,提升其本征催化活性;高熵体系中不同金属元素的尺寸差异导致大量缺陷产生,调控了活性位点的配位环境,从而促进活性位点暴露,提升催化性能.“,”High-entropy materials are emerging electrocatalysts by integrating five or more elements into one single crystallographic phase to optimize the electronic structures and geometric environments. Here, a rocksalt-type high-entropy oxide Mg0.2Co0.2Ni0.2Cu0.2Zn0.2O (HEO) is developed as an electro-catalyst towards the oxygen evolution reaction (OER). The obtained HEO features abundant cation and oxygen vacancies originating from the lattice mismatch of neighboring metal ions, together with enlarged Co/Ni-O covalency due to the introduction of less electronegative Mg and Zn. As a result, the HEO exhibits superior intrinsic OER activities, delivering a turnover frequency (TOF) 15 and 84 folds that of CoO and NiO at 1.65 V, respectively. This study provides a mechanistic understanding of the enhanced OER on HEO and demonstrates the potential of high-entropy strategy in developing efficient oxygen electrocatalysts by elaborately incorporating low-cost elements with lower elec-tronegativity.
其他文献
人工光合作用可直接将二氧化碳转化为一系列碳氢化合物,实现大气中的碳循环,被视为一种既能解决能源短缺又能减少温室气体,进而改善人类生存环境的新型绿色技术.光催化二氧化碳还原体系需要合适的耦合氧化还原反应,以及对外界光源的有效利用以产生足够电子参与反应,因此构建高催化活性和高选择性的催化体系仍然面临着巨大挑战.此外,二维纳米结构(2D)由于具有比表面积大、离子的迁移路径短以及独特的平层电子转移轨道等特性,被证实有利于光催化还原CO2过程.其中,Bi3NbO7特殊的片层结构和合适的能带位置,使其在光催化还原CO
采用大量光片和薄片显微镜下鉴定、X射线衍射分析、化学元素分析等多种手段,研究安徽省池州市贵池区宝树尖银多金属矿床的矿物组成及其矿物特征、化学成分、矿石结构、构造、有益组分及其赋存状态等,最终查明本矿床是铅锌矿床,伴生有益元素有Ag、Cd、Cu,Ag主要赋存于方铅矿内,Cd主要赋存于闪锌矿内,Cu主要赋存于黄铜矿内.
水污染对人类健康和生态环境造成了严重的危害,引起了人们广泛关注.半导体光催化技术被认为是一种去除废水中有机污染物的有效方法.近年来,石墨相氮化碳(g-C3N4)作为一种无金属的光催化剂,具有合适的带隙能(Eg≈2.7 eV)、良好的化学稳定性、较好的热稳定性、无毒以及强的还原电位(ECB≈-1.3 eV)等特点,表现出较好的光催化活性.但由于g-C3N4光生载流子复合快和量子效率低,限制了其实际应用.因此,研究者们开发了各种有效的方法来克服上述缺点,如调控形貌、掺杂离子、沉积贵金属和构建异质结等.其中,构
光催化完全分解水制氢是一个在粉末颗粒中实现多个串行物理化学步骤的复杂反应过程.这一过程在理论上具有体系简单、成本低、易操作等特点.然而,单步光激发系统中通常存在严重的光生载流子复合,这极大地制约了光催化的整体效率.利用能带结构不同的半导体合理构建异质结催化剂被认为是解决这一难题的重要途径之一.特别是近年来,S型异质结概念的提出为设计异质结结构以及分析不同半导体之间的载流子迁移问题提供了新的思路.本文以小粒径Bi0.6Y0.4VO4(BYV)为研究对象,首先利用“共沉淀-晶化”的方法制备了BYV固溶体纳米颗
安徽池州地区沉积锰矿赋存于二叠系孤峰组含锰岩系中.该矿床包括沉积作用形成的碳酸锰矿和经后期氧化形成的氧化锰矿.本文在野外调查和测试分析的基础上,通过对该类型碳酸锰矿体地质特征、控矿因素、成因类型及找矿标志等方面进行分析总结,为今后在该地区开展碳酸锰矿勘查工作提供参考.
石墨炔(GDY,g-CnH2n-2)作为一种新型的由sp和sp2杂化的碳原子构成的二维碳材料,因其独特的纳米级孔隙、二维层状共轭骨架结构及半导体性质等特性,使之在能源、电化学、光催化、光学、电子学等诸多领域具有显著优势.它作为一种具有良好的层状结构的新型碳材料,其可调节的电子结构弥补了石墨烯无明显带隙的缺点,有望在光催化分解水领域展现出广阔的应用前景.本文报道了以CuI粉末为催化剂制备石墨炔的新方法,并对其进行改性后制备了Co9S8-GDY-CuI新型复合材料;即通过有机合成法和水热法将GDY-CuI片层
近年来,卤氧铋(BiOX,X=Cl,Br,I)作为多功能半导体光催化材料,因其具有独特的层状结构和电子结构,吸引了广泛关注.然而,相对低的导带(CB)和高的价带(VB)位置导致其氧化还原能力弱,从而限制了其实际应用.研究表明,通过富铋策略调控BiOX中元素化学计量比,可以实现对其能带结构的可控调控.尽管富铋半导体材料被视为有效的可见光光催化剂的候选材料之一,但是单一组分的富铋光催化剂不利于光生载流子的分离和迁移.具有匹配能带结构的富铋基复合光催化剂的构建已被证实可以加速光生电子-空穴对的分离和迁移.与传统
近年来,随着社会环保意识的迅速提高以及对可再生能源利用能力的大幅增强,以燃料电池和电解池为代表的电化学技术已经逐渐在能源的存储、转化和利用方面发挥着不可或缺的独特作用.其中,固态氧化物电解池经过多年的发展,在装置成本和工作效率上取得了长足的进步,在储能转化方面具有重要的潜力.与此同时,伴随着《巴黎协定》签订以来各国的“碳中和”路线图逐渐出台,利用相对廉价易得的可再生电能,将二氧化碳(CO2)和甲烷(CH4)等碳一(C1)分子电解转化为高附加值的可再生燃料(如水煤气、乙烯等),对于碳中和目标的实现具有重要的
80%以上的工业生产过程涉及催化,如化工生产、能源转换、制药和废物处理等等.催化剂的使用显著提高了生产效率,降低了生产成本,为国民经济、地球环境和人类文明的可持续发展做出了很大贡献.为了满足日益增长的生产需求和最大的经济效益,开发高效、稳定、低成本的新型催化剂已成为当务之急.金属中心负载在载体上的负载型金属催化剂因其较好的催化活性和相对较低的金属用量而受到广泛关注.研究发现,负载型结构可增强传热和传质并增加活性金属中心的分散度,从而影响催化性能.此外,负载金属的颗粒尺寸对催化剂的性能有很大影响.迄今为止,
析氢反应是电解水产制氢的关键反应之一.在碱性条件下,由于催化剂表面与反应过程中产生的氧物种、氢物种与催化剂的吸附未处于最佳状态,析氢反应动力学往往比较缓慢,比在酸性条件下慢2-3个数量级.目前,铂基纳米催化剂被认为是最优的析氢催化剂,但因价格昂贵、稳定性较差,限制了其在电解水器件上的大规模应用.因此,设计一种价格较为低廉、活性高和稳定性好的碱性析氢催化剂尤为必要.钌作为铂族金属之一,其价格约为铂的三分之一,但其与氢的结合能却与铂类似.因此,钌基催化剂被认为是有望替代铂作为析氢催化剂.本文结合模板法、静电纺