Coupling dynamic analysis of spacecraft with multiple cylindrical tanks and flexible appendages

来源 :Acta Mechanica Sinica | 被引量 : 0次 | 上传用户:cc_7722
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
This paper is mainly concerned with the coupling dynamic analysis of a complex spacecraft consisting of one main rigid platform, multiple liquid-filled cylindrical tanks,and a number of flexible appendages. Firstly, the carrier potential function equations of liquid in the tanks are deduced according to the wall boundary conditions. Through employing the Fourier–Bessel series expansion method, the dynamic boundaries conditions on a curved free-surface under a low-gravity environment are transformed to general simple differential equations and the rigid-liquid coupled sloshing dynamic state equations of liquid in tanks are obtained. The state vectors of rigid-liquid coupled equations are composed with the modal coordinates of the relative potential function and the modal coordinates of wave height. Based on the Bernoulli–Euler beam theory and the D’Alembert’s principle, the rigid-flexible coupled dynamic state equations of flexible appendages are directly derived, and the coordinate transform matrixes of maneuvering flexible appendages are precisely computed as time-varying. Then, the coupling dynamics state equations of the overall system of the spacecraft are modularly built by means of the Lagrange’s equations in terms of quasi-coordinates. Lastly, the cou-pling dynamic performances of a typical complex spacecraft are studied. The availability and reliability of the presented method are also confirmed. This paper is mainly concerned with the coupling dynamic analysis of a complex spacecraft consisting of one main rigid platform, multiple liquid-filled cylindrical tanks, and a number of flexible appendages. Firstly, the carrier potential function equations of liquid in the tanks are deduced according to to the wall boundary conditions. Based on the Fourier-Bessel series expansion method, the dynamic boundaries conditions on a curved free-surface under a low-gravity environment are transformed to general simple differential equations and the rigid-liquid coupled sloshing dynamic state equations of liquid in tanks are obtained. The state vectors of rigid-liquid coupled equations are composed with the modal coordinates of the relative potential function and the modal coordinates of wave height. Based on the Bernoulli-Euler beam theory and the D’Alembert’s principle, the rigid-flexible coupled dynamic state equations of flexible appendages are directly derived, and the coordinate transform matrixes of maneuvering flexible appendages are precisely computed as time-varying. Then, the coupling dynamics state equations of the overall system of the spacecraft are modularly built by means of the Lagrange’s equations in terms of quasi-coordinates. Lastly, the cou-pling dynamic performances of a typical complex spacecraft are studied. The availability and reliability of the presented method are also confirmed.
其他文献
为探究吕家坨井田地质构造格局,根据钻孔勘探资料,采用分形理论和趋势面分析方法,研究了井田7
为探究吕家坨井田地质构造格局,根据钻孔勘探资料,采用分形理论和趋势面分析方法,研究了井田7
期刊
为探究吕家坨井田地质构造格局,根据钻孔勘探资料,采用分形理论和趋势面分析方法,研究了井田7
为探究吕家坨井田地质构造格局,根据钻孔勘探资料,采用分形理论和趋势面分析方法,研究了井田7
为探究吕家坨井田地质构造格局,根据钻孔勘探资料,采用分形理论和趋势面分析方法,研究了井田7
为探究吕家坨井田地质构造格局,根据钻孔勘探资料,采用分形理论和趋势面分析方法,研究了井田7
为探究吕家坨井田地质构造格局,根据钻孔勘探资料,采用分形理论和趋势面分析方法,研究了井田7
为探究吕家坨井田地质构造格局,根据钻孔勘探资料,采用分形理论和趋势面分析方法,研究了井田7
近日, 福建省委教育厅公布了福建省2017年 “闽江学者奖励计划” 入选名单, 我校材料科学与工程学院喻志阳教授入选闽江学者 “特聘教授”, 环境科学与工程学院院长李永平、
期刊
为探究吕家坨井田地质构造格局,根据钻孔勘探资料,采用分形理论和趋势面分析方法,研究了井田7