论文部分内容阅读
针对以单个或集体用户为业主的用户侧小容量微电网,考虑到成本约束及用电特征的不确定性,提出了一种基于核函数极限学习机的微电网短期负荷预测方法。使用核函数极限学习机、启发式遗传算法和分时训练样本,建立了包含离线参数寻优与在线负荷预测的预测模型;通过模型参数的周期更新来保证算法最优参数的时效性,同时降低在线预测系统的计算复杂度与历史数据存储量。通过对不同容量、类型的用户侧微电网进行短期负荷预测,分析了预测结果的准确度、参数周期更新的效果、预测结果对经济运行的影响和预测方法的计算效率。