论文部分内容阅读
当输入图像因污迹、噪声和采样而严重退化时,目前基于Papoulis-Gerchberg(PG)算法的大多数超分辨率方法表现不佳.因此,提出了一种基于扩散驱动先验和PG算法的超分辨率方法,能够在提高图像分辨率的同时,估计缺失的高频分量.首先提出了一种新型扩散驱动平滑的先验,能够在平坦和轮廓区域之间自动平衡作用,确保正则化水平以产生清晰图像.然后,将PG算法引入到迭代过程中,以估计重构场景中缺失的小规模特征.实验结果表明,相比现有的超分辨率方法,提出方法的峰值信噪比和结构相似指数结果更高,重构图像更加清