论文部分内容阅读
传统的解释学习是通过单个实例进行学习的,学习结果往往带有实例本身的特殊性质,知识求精能较正这一缺陷,但学习结果的效用不高。本文结合了EBL方法和求精算法,提出了综合多个实例的增量式解释学习算法EBG-plus,学习质量随实例数目增加而单调上升,学习结果效用高,并能够自动改进领域知识的编码质量。