论文部分内容阅读
任何数学知识、方法和思想的发现和发明都是基于对某些问题的火热思考。而形式化的严密体系则是后来利用逻辑整理历史的结果。弗赖登塔尔的观点促使我形成了数学教学的两大原则。第一,“利用本原性问题驱动”。指的是:对数学被发现时的真实问题加以提炼、加工,利用这些触及数学源头、数学本质的问题来启发、引导学生,组织、统领教学。比如,三角函数导数的推导均要
The discovery and invention of any mathematical knowledge, method, and thought are based on fiery thinking of certain issues. The formal tight system is the result of using logic to organize history. Freudenthal's perspective prompted me to form the two principles of mathematics teaching. First, “Use Primitive Problem Driven ”. Refers to the real problems when mathematics was found to be refined, processed, use of these touch the source of mathematics, the nature of mathematics to inspire and guide students, organize and guide the teaching. For example, the derivation of trigonometric functions are necessary