论文部分内容阅读
采用量子化学计算与分子动力学模拟相结合的方法研究了氯化1-丁基-3-甲基咪唑(A)、氯化1-己基-3-甲基咪唑(B)、氯化1-辛基-3-甲基咪唑(C)、1-辛基-3-甲基咪唑硫酸氢盐(D)、1-辛基-3-甲基咪唑乙酸盐(E)、1-辛基-3-甲基咪唑三氟甲磺酸盐(F)六种离子液体对盐酸溶液中铁腐蚀抑制的微观机理,并对缓蚀性能进行了评价.量子化学计算发现,这六种离子液体分子的反应活性区域主要集中在阳离子的咪唑环和阴离子的Cl、O原子上,而且缓蚀效率随烷基链长的增加而增加,离子液体F的缓蚀效率最高.分子动力学模拟发现离子液体的阳离子主要以咪唑环、阴离子主要以含氧基团吸附且覆盖在金属铁的表面,形成一层保护膜阻碍腐蚀介质与铁表面相互作用而起到缓蚀作用.六种离子液体的缓蚀效率顺序为F>E>D>C>B>A,与实验研究结果相一致.
The effects of 1-butyl-3-methylimidazolium chloride (A), 1-hexyl-3-methylimidazolium chloride (B) (C), 1-octyl-3-methylimidazolium hydrogensulfate (D), 1-octyl-3- methylimidazolium acetate (E), 1-octyl 3-methylimidazolium triflate (F) on corrosion inhibition of iron in hydrochloric acid solution by six kinds of ionic liquids, and the corrosion inhibition performance was evaluated.Quantum chemical calculation found that the six ionic liquid molecules The reactive region mainly concentrates on the Cl and O atoms of the imidazole ring and anion of the cation, and the inhibition efficiency increases with the increase of the alkyl chain length, and the corrosion inhibition efficiency of the ionic liquid F is the highest. The molecular dynamics simulation shows that the ionic liquid The main cation is the imidazole ring, the anion is mainly adsorbed on the oxygen-containing groups and covers the surface of the metal iron, forming a protective film that hinders the interaction between the corrosive medium and the iron surface and thus acts as a corrosion inhibitor. The corrosion inhibition efficiency of the six ionic liquids The order of F> E> D> C> B> A is consistent with the experimental results.