论文部分内容阅读
本文针对基于核的增量超限学习机(kernel based incremental extreme learning machine,KB-IELM)对非平稳动态系统的时变状态跟踪能力不足的问题,提出一种新型的状态预测方法。通过融合遗忘因子和自适应时变正则化因子构建新的目标函数。通过最小化字典的快速留一交叉验证(fast leave-one-out cross-validation,FLOO-CV)误差,选择具有预定规模的关键节点以构成字典。通过融合遗忘因子,为字典中各关键节点按时间顺序分配不同权重。基于F