论文部分内容阅读
选择余氯为研究对象,以南方某市给水管网水质监测的数据为基础,使用线性回归和非线性神经网络(ANN)方法建立模型,找到了一种利用在线监测数据和人工监测数据实时预测管网余氯的方法。通过建立给水管网水质模型,可以由监测系统动态回传的数据来实时的预测下一天人工点的水质。模拟的结果显示ANN模型比线性回归模型有更好的预测能力,预测的平均相对误差:ANN模型为14.9%,线性回归模型为25.8%。使用ANN模型可以实现实时预测。