论文部分内容阅读
Based on the experimental results that solute-depleted zone was observed in Cu-28Zn-4Al (mass fraction) at 523 K,△G is calculated as a positive according to the thermodynamic criteria for the spinodal decomposition of a tarysystems. So, the solute-depleted zone cannot be formed by spinodal decomposition. Dislocation density requiredby the formation of solute-depleted zone is estimated greater than 7.89×109 cm-2 according to the segregationof solute atoms around dislocations, which is not consistent with the practical situation for the alloy at 523 K.Associated with the intal friction experimental fact that intal friction peaks appear within the incubation forbainitic transformation in Cu-Zn-Al alloy, the equilibrium temperature, T0, is evaluated as 433 K for solute-depletedCu-25Zn-3.4Al, which is lower than the experimental temperature 523 K. Thus, nucleation by shear mechanism isimpossible in this circumstance. Therefore, it is concluded that , like bainite in steels and Ag-Cd, bainite in Cu-Zn-Alalloys nucleates by diffusional mechanism, just implied by the experimental existence of solute-depleted zone.