论文部分内容阅读
以C~0连续non-Sibsonian插值作为三次单纯形Bernstein-Bézier多项式的基坐标,构造C1连续自然邻近插值函数。介绍了高阶连续函数的构建原理和性质。将C1连续自然邻近插值函数应用于曲面拟合场合,由于Voronoi图能够自动调整数据点分布不规则和密度不均匀在空间上的差异,即使对于散乱数据点,也能获得较好的拟合结果。