论文部分内容阅读
作者研制的扫描式分子气体电感耦合等离子体(ICP)光谱仪,能用氧、空气等分子气体代替氩气作为工作气体,进行分子气体ICP放电。克服了固氩气供应的困难给ICP光谱仪的应用带来的限制。所用的RF发生器的功率为5kW,可以扩展用于ICP光谱仪的固体进样系统的研究。所设计的气路转换系统和同心石英等离子体炬管等,使扫描式分子气体ICP光谱仪既可用于分子气体ICP放电,又可用于氩ICP放电。作者还利用首次测量到的扫描式ICP光谱仪出射光谱线峰漂移与温度、波长之间的函数关系,研制发明了扫描式ICP光谱仪的智能波长校正装置(简称IWC),并用定量方程式表达了这些函数关系。扫描式ICP-IWC光谱仪经过二年多的应用表明,用IWC装置取代使用了近百年的局部恒温系统是完全可能的。扫描式ICP-IWC光谱仪无需预热,无需对每条分析线进行峰描迹,结构简单,使用方便,分析快速。样品元素成分的分析结果与标样鉴定值基本一致。测量精度为1.%。
The scanning molecular gas inductively coupled plasma (ICP) spectrometer developed by the author can use molecular oxygen such as oxygen and air instead of argon as the working gas for ICP gas discharge. Overcoming the difficulties of applying argon gas to the application of ICP spectrometer. The RF generator used has a power of 5kW and can be extended to study solid-state sampling systems for ICP spectrometers. The designed gas circuit conversion system and concentric quartz plasma torch make the scanning molecular gas ICP spectrometer both for ICP gas discharge and argon ICP discharge. The authors also developed a smart wavelength correction device (referred to as IWC) that invented a scanning ICP spectrometer using the first measurement of the peak-to-peak drift of the emission spectral line of a scanning ICP spectrometer as a function of temperature and wavelength, and expressed these quantitative equations Functional relationship. After more than two years of application, the scanning ICP-IWC spectrometer shows that it is entirely possible to replace the local thermostat system with an IWC unit for nearly a hundred years. Scanning ICP-IWC spectrometer without preheating, without the need for peak tracing each analytical line, the structure is simple, easy to use, fast analysis. The results of the analysis of the elemental composition of the sample are basically the same as those of the standard sample. Measurement accuracy of 1. %.