论文部分内容阅读
本文研究了较PF—环更广泛的一类环,被称为fPF—环,得到如下结果:(1)R是fPF—环当且仅当对于每个a∈R,存在f∈H(R),使得ann_R(f(a))是R的一个纯理想;(2)设R是局部环,则R是fPF—环当且仅当对于每个a∈R,存在f∈H(R)使得f(a)=0或者f(a)不是零因子;(3)R是fPF—环当且仅当对每个a∈R。存在f∈H(R)使得f(a)在每个局部化Rp中不是零因子,或者在每个Rp中f(a)=0;(4)设R是强fPF—环,且对于x∈R,a∈ann_R(x)当且仅当f(a)∈ann_R(