论文部分内容阅读
通过水热法合成g-C_3N_4,并使Ag_3VO_4纳米粒子附着在g-C_3N_4表面,形成g-C_3N_4/Ag_3VO_4复合光催化剂,通过两种半导体材料之间的相互协同作用,提高复合材料的光催化性能及其光致稳定性。并通过XRD、TEM、XPS、FT-IR等表征方法对g-C_3N_4/Ag_3VO_4光催化剂进行分析;在可见光下以Rh B(罗丹明B)和MB(亚甲基蓝)为目标污染物,高压汞灯为光源,评估g-C_3N_4/Ag_3VO_4复合光催化剂的性能,并运用XRD、红外、DRS等表征了其结构特征。通过实验可使学生初步了解纳米材料的基本知识,常用的表征分析方法,以及环境污染物降解处理方法。实验内容涵盖材料化学、环境化学、无机材料合成、仪器分析、光催化性能测试等方面。实验内容设置有助于培养学生的科研创造能力。
Synthesis of g-C_3N_4 by hydrothermal method and Ag_3VO_4 nanoparticles on the surface of g-C_3N_4 composite g-C_3N_4 / Ag_3VO_4 composite photocatalyst, through the interaction between the two semiconductor materials to improve the composite photocatalytic properties And its photostability. The photocatalysts g-C_3N_4 / Ag_3VO_4 were characterized by XRD, TEM, XPS and FT-IR. RhB (methylene blue) and RhB (methylene blue) Light source, evaluate the performance of g-C_3N_4 / Ag_3VO_4 composite photocatalyst and characterize its structure by XRD, IR, DRS and so on. Through experiments, students can get to know the basic knowledge of nanomaterials, the commonly used characterization and analysis methods, and the methods of environmental pollutants degradation. The experiment covers material chemistry, environmental chemistry, inorganic materials synthesis, instrumental analysis, photocatalytic performance testing and so on. Experimental content settings help to develop students’ research and creativity.