论文部分内容阅读
将支持向量机(SVM)用于高光谱遥感影像分类的研究,采用决策边界特征提取(DBFE)算法对高光谱影像进行维数约简,以径向基函数(RBF)作为SVM模型的核函数,把混沌优化搜索技术引入到PSO算法中,以基本PSO算法为主体流程,对种群中最好的粒子进行给定步数的混沌优化搜索,以改进基本PSO算法进化后期收敛速度慢、易陷入局部极小值的缺陷。利用改进的混合粒子群优化算法(PSO)来实现SVM模型参数的自动选择,继而构建了一种参数最优的粒子群优化支持向量机(PSO-SVM)多类分类模型。选用220波段的AVI