【摘 要】
:
Every one of us knows the sensation of going up, on retreat, toa high place and feeling ourselves so lifted up that we canhardly imagine the circumstances of o
论文部分内容阅读
Every one of us knows the sensation of going up, on retreat, toa high place and feeling ourselves so lifted up that we canhardly imagine the circumstances of our usual lives, or all thethings that make us fret. In such a place, in such a state, we startto recite the standard litany: that silence is sunshine where corn-pany is clouds; that silence is rapture, where company is doubt;that silence is golden, where company is brass.
Everyone of us knows the sensation of going up, on retreat, toa high place and feeling ourselves so lifted up that we canhardly imagine the circumstances of our usual lives, or all thethings that make us fret. In such a place, in such a state, we startto recite the standard litany: that silence is sunshine where corn-pany is clouds; that silence is rapture, where company is doubt; that silence is golden, where company is brass.
其他文献
为提高图像目标多种多值属性的识别速度,提出一种端到端的识别算法。采用修正的YoloV3网络作为主网络,确定目标的boundingbox;依据属性独立特性构造子网络,多个子网络共享由boundingbox确定的主网络深层次特征,进行推断,并采用多值输出满足多值属性的识别。在训练过程中,采用了三阶段分目标训练。实验结果验证了该算法在识别准确度和时间效率上的优良性能。
膝关节磁共振成像(MRI)是诊断膝关节损伤的首选方法。然而,MRI影像的人工诊断是费时的,而且容易出现诊断错误。为了更准确地预测膝关节损伤,辅助临床医生做出诊断,提出一种多模态特征融合的深度学习模型,用于检测一般异常、前交叉韧带撕裂和半月板撕裂。提取梯度方向直方图(Histogram of Oriented Gradients,HOG)特征和局部二值模式(Local Binary Pattern,LBP)特征,经contact融合后利用PCA选取特征贡献度超过95%的特征作为传统特征;在VGG16模型的基
从内容和形式上阐述了中学班会课在主题的选择和确定方面的一些基本要求和基本方法,告诉读者一个班级从形成到发展在不同阶段班会课主题内容的侧重点.列举了100多个富有针对
针对井式强对流退火炉存在的工艺周期长和砌体内的蓄热在冷却过程中被浪费的弊端,提出了采用脉冲水冷却系统的设想,对井式强对流退火炉进行改造。应用脉冲水冷却系统,不仅提
深度学习的迅速发展使得图像描述效果得到显著提升,针对基于深度神经网络的图像描述方法及其研究现状进行详细综述。图像描述算法结合计算机视觉和自然语言处理的知识,根据图像中检测到的内容自动生成自然语言描述,是场景理解的重要部分。图像描述任务中,一般采用由编码器和解码器组成的基本架构。改进编码器或解码器,应用生成对抗网络、强化学习、无监督学习以及图卷积神经网络等方法能有效提高图像描述算法的性能。对每类方法的代表模型算法的效果以及优缺点进行分析,并介绍适用的公开数据集,在此基础上进行对比实验。对图像描述面临的挑战以
流形学习是一类特殊的非线性求解问题,即从高维采样数据中恢复低维流形结构,以达到维数约简的目的,是模式识别与数据可视化中的重要方法。流形学习存在许多基于局部线性假设的数值解法,即显示地定义局部线性映射模型再进行全局优化,这些方法对于流形的形状、采样的方式都比较敏感。另一种非线性求解工具,神经网络,因为不依赖于具体数学模型,理论上具有较好的鲁棒性,但是流形学习的特殊非线性,使得传统神经网络很难达到满意的效果。针对上述问题,改进了一种同质双通道神经网络——孪生网络,并应用于流形学习。针对孪生网络的两条通道,设计
阻塞性睡眠呼吸暂停(Obstructive Sleep Apnea,OSA)是成年人较为常见的呼吸类疾病之一,该疾病的特点是睡眠过程中频繁出现上气道完全或部分塌陷,严重影响人们的睡眠质量以及身体健康。阻塞性睡眠呼吸暂停综合征的诊断主要依靠多导睡眠监测,但这种方法无法满足目前大量的诊断需求。随着人工智能的出现及发展,假设深度学习可以有效地协助医生进行诊断该综合征。主要从阻塞性睡眠呼吸暂停的临床诊断方式出发,介绍了颅面侧位片作为诊断数据集的优势,以及人工智能诊断OSA的现状,提出了人工智能辅助医师诊断OSA的
目前关于商品评论的深度网络模型难以有效利用评论中的用户信息和产品信息。提出一种基于注意力交互机制的层次网络(HNAIM)模型。该模型利用层次网络对不同粒度语义信息进行提取,并通过注意力交互机制在层次网络中通过捕捉用户、产品中的重要特征来帮助提取文本特征。最终将用户视角下的损失值和产品视角下的损失值作为辅助分类信息,并利用层次网络输出的针对用户或产品的关键文本特征进行训练和分类。三个公开数据集上对比结果表明,该模型较相关模型而言效果均有提升。
目标检测确定检测图像中目标对象所在区域及其类别,语义分割对检测图像实现像素级分类,实例分割可以定义为同时解决目标检测与语义分割问题,在分类的同时确定每个目标实例语义。实例分割网络在无人机驾驶、机器人抓取、工业筛检等领域具有重要应用意义,针对目前基于深度学习实例分割综述性文章的空白,对实例分割进展进行概述,按照单阶段实例分割与双阶段实例分割的分类对不同网络模型进行论述,重点介绍近两年网络框架的发展,总结各网络特点的同时提出未来发展方向。
以求异性提问激活思维,使学生学会多重角度处理问题的本领;以延伸性提问拓展思维,使学生学会应对危急的本领;以推理联想提问激活思维,使学生学会揭示课文内涵的本领.