论文部分内容阅读
针对基于表观模型的图像分割算法在特征点迭代定位过程中计算量过大、对非线性局部特征的优化较为困难等问题,采用一种基于监督学习的梯度下降算法,建立4层多分辨率金字塔模型,并使用一种基于巴氏系数的特征提取函数(B-SIFT)替代原方法中的尺度不变特征变换(SIFT)特征,对左心室心内膜及心外膜进行特征点定位。首先对训练集进行归一化处理,统一经食道超声心动图像(TEE)的尺度;然后建立基于多分辨率金字塔和B-SIFT特征的监督下降模型,得到特征点趋近于真实值的梯度下降方向序列;最后将得到的方向序列作用于测试