论文部分内容阅读
遥感图像分类受自然环境的复杂性和实际样本数据的分布情况约束,其结果将直接影响对土地利用、覆盖情况的认知。人工免疫系统具有自学习、自组织、记忆的能力,可解决非线性分类问题中的局部极值、鲁棒性等难点。该文将人工免疫系统引入遥感图像分类领域,设计了基于克隆选择算法的遥感图像监督分类方法,并将其应用于广州市遥感影像分类。实验结果表明:与最大似然法相比,该方法具有更高的精度;同时该方法对公路、桥梁等线状城市用地较敏感,适用于快速发展的中心城市的遥感影像分类。