Bioinspired soft actuators with highly ordered skeletal muscle structures

来源 :生物设计与制造(英文版) | 被引量 : 0次 | 上传用户:christain008
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Mammals such as humans develop skeletal muscles composed of muscle fibers and connective tissue,which have mechanical properties that enable power output with three-dimensional motion when activated.Artificial muscle-like actuators devel-oped to date,such as the McKibben artificial muscle,often focus sole contractile elements and have rarely addressed the contribution of flexible connective tissue that forms an integral part of the structure and morphology of biological muscle.Herein,we present a class of pneumatic muscle-like actuators,termed highly mimetic skeletal muscle (HimiSK) actuator,that consist of parallelly arranged contractile units in a flexible matrix inspired by ultrasonic measurements on skeletal muscle.The contractile units act as a muscle fiber to produce active shortening force,and the flexible matrix functions as connective tissue to generate passive deformation.The application of positive pressure to the contractile units can produce a linear contraction and force.In this actuator,we assign different flexible materials as contractile units and a flexible matrix,thus forming five mold actuators.These actuators feature three-dimensional motion on activation and present both intrinsic force-velocity and force-length characteristics that closely resebmle those of a biological muscle.High output and tetanic force produced by harder contractile units improve the maximum output force by up to about 41.3% and the tetanic force by up to about 168%.Moreover,high displacement and velocity can be generated by a softer flexible matrix,with the improve-ment of maximum displacement up to about 33.3% and velocity up to about 73%.The results demonstrate that contractile units play a crucial role in force generation,while the flexible matrix has a significant impact on force transmission and deformation;the final force,velocity,displacement,and three-dimensional motion results from the interplay of contractile units,fluid and flexible matrix.Our approach introduces a model of the presented HimiSK actuators to better understand the mechanical behaviors,force generation,and transmission in bioinspired soft actuators,and highlights the importance of using flexible connective tissue to form a structure and configuration similar to that of skeletal muscle,which has potential usefulness in the design of effective artificial muscle.
其他文献
Since the start of the Precision Medicine Initiative by the United States of America in 2015,interest in personalized medi-cine has grown extensively.In short,personalized medicine is a term that describes medical treatment that is tuned to the individual
The multidisciplinary research field of bioprinting combines additive manufacturing,biology and material sciences to cre-ate bioconstructs with three-dimensional architectures mimicking natural living tissues.The high interest in the possibility of reprod
In the past few decades,robotics research has witnessed an increasingly high interest in miniaturized,intelligent,and inte-grated robots.The imperative component of a robot is the actuator that determines its performance.Although traditional rigid drives
Conductive and transparent dipeptide hydrogels are desirable building blocks to prepare soft electronic devices and wearable biosensors due to their excellent biocompatibility,multi-functionality,and physiochemical properties similar to those of body tiss
Currently,artificial-membrane lungs consist of thousands of hollow fiber membranes where blood flows around the fibers and gas flows inside the fibers,achieving diffusive gas exchange.At both ends of the fibers,the interspaces between the hol-low fiber me
Resource-scarce regions with serious COVID-19 outbreaks do not have enough ventilators to support critically ill patients,and these shortages are especially devastating in developing countries.To help alleviate this strain,we have designed and tested the
The interfacial performance of implanted neural electrodes is crucial for stimulation safety and the recording quality of neuronal activity.This paper proposes a novel surface architecture and optimization strategy for the platinum-iridium(Pt-Ir) electrod
Sweat could be a carrier of informative biomarkers for health status identification;therefore,wearable sweat sensors have attracted significant attention for research.An external power source is an important component of wearable sensors,however,the curre
Four-dimensional (4D) printing is an advanced form of three-dimensional (3D) printing with controllable and programmable shape transformation over time.Actuators are used as a controlling factor with multi-stage shape recovery,with emerging opportunities
Large cutaneous wounds pose a severe medical problem and may be deadly in cases when regeneration is impaired.Recently,topical stem cell therapy has been realized as a promising strategy for wound healing and skin regeneration.However,stem cells must be a