论文部分内容阅读
为了提高重建的质量和速度,提出一种联合深度置信网络与邻域回归的超分辨率算法.一方面,结合字典学习与神经网络表示的联系对传统的深度置信网络进行调整,采用该网络模型实现字典学习,充分利用该模型突出的学习能力,使字典具有更好的特征表达能力,从而提高图像的重建质量.另一方面,在基于字典学习的超分辨率框架中融入邻域回归思想.首先,利用最近邻域算法确定字典原子的最近邻域映射关系;然后以此为基础,结合邻域回归方法,离线计算高、低分辨率投影矩阵;最后在重建过程中将该投影矩阵应用于图像重建.该方法避免了字典学习中的系