有感于打破“潜规矩”

来源 :石油政工研究 | 被引量 : 0次 | 上传用户:ll6960071
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
“温家宝总理为农民追工钱”的新闻,很吸引人,一些媒体还配发了评论,但细读后,仍觉得意犹未尽。未尽之意,主要是有人觉得这件事让人感到意外。其中味道,颇不寻常,有必要再评说一番。 意外之一是温家宝总理临时停车,“私访”民宅,没有完全按照当地政府安排的行程走,因此听到了一些“出人意料”的话。这种情况在当今领导视察中颇为少见。意外 News of “Premier Wen Jiabao Chasing Money for Peasants” is very attractive. Some media have also distributed comments, but after reading it, I still feel quite determined. The idea that has not been done, mainly because some people think this thing makes people feel surprised. Which taste, quite unusual, it is necessary to comment again. One of the surprises was Premier Wen Jiabao’s temporary stoppage. The “private visit” to his private houses did not go completely according to the schedule arranged by the local government, so he heard some “unexpected” words. This situation is rare in today’s leadership inspections. accident
其他文献
电子商务是建立在网络经济基础上的一种全新交易模式,代表着未来商务的发展方向,有着巨大的市场与无限的商机.其中电子支付是关键,离开电子支付就谈不上真正完整的电子商务.
环的拟polar性起源于Banach代数中的广义逆理论和谱理论,关联着环的正则性、clean性,是近年来环论研究的重要内容之一.2012年,王周和陈建龙在研究伪Drazin逆时引入了伪polar
本文主要研究了两类非线性偏微分方程的不变子空间,通过不变子空间方法构造了它们的一些精确解.全文共分为四章,结构安排如下:  在第一章引言中,简述了本文的研究背景,精确
分形理论在许多学科领域有着非常广泛的应用,我们在建立用以描述天文学、湍流、物理学、生物学、化学、甚至经济学中的现象的数学模型时,分形已成为相当重要的工具.如分子运
N-体问题实际上是一个常微分方程组,它描绘了N个天体的运动规律。具体地说,N-体问题是研究在牛顿运动定律及万有引力作用下,每个天体只有相互的作用力,而不受别的外力时的运动状
1878年Ch.Hermite在其文章[12]中介绍了Hermite插值,其后出现了许多研究该课题的文章,但仅有少部分文章研究高阶Hermite插值.最近十年得到了许多关于高阶Hermite插值的重要文
1956年,Jesmanowicz猜想对任意的正整数n,若a,b,C是两两互素的正整数且满足a2+b2=c2,则丢番图方程(an)x+(bn)y=(cn)2仅有正整数解(x,Y,z)=(2,2,2).此猜想是有关毕达哥拉斯数
该文首先根据多维密度函数的定义把它分解成关于各个变量的条件概率,而这些条件概率可以由各变量的条件失效率来表达.通过这些条件概率得到了三类条件失效率,并用它们去刻画
非饱和土中水流入渗问题属于水科学研究领域。该问题的研究在农田水利、水土工程、水文地质、生态环境等领域都占有重要地位。对该问题的早期研究中,忽略了空气压力变化对入渗
可逆系统是一类具有对合结构的保守动力系统,许多专家学者对此系统进行了大量的研究,并得到了许多重要的结论(见[3],[13]-[20]).例如,俄国数学家S.M.Sevywk在通常的非退化条