论文部分内容阅读
We report that,by linearly polarized pumping of different wavelengths,Kerr transients appear at zero magnetic field only in the case when GaMnAs samples are initialized at 3 K by first applying a 0.8 Tesla field and then returning to zero field.We find that,instead of magnetization precession,the near-band gap excitation induces a coherent out-of-plane turning of magnetization,which shows very long relaxation dynamics with no precession.When photon energy increases,the peak value of the Kerr transient increases,but it decays rapidly to the original slow transient seen under the near-band-gap excitation.
We report that, by linearly polarized pumping of different wavelengths, Kerr transients appear at zero magnetic field only in the case when GaMnAs samples are initialized at 3 K by first applying a 0.8 Tesla field and then returning to zero field. We find that, instead of magnetization precession, the near-band gap excitation induces a coherent out-of-plane turning of magnetization, which shows very long relaxation dynamics with no precession. The photon energy increases, the peak value of the Kerr transient increases, but it decays rapidly to the original slow transient seen under the near-band-gap excitation.