论文部分内容阅读
油气管道在储运过程中,沿线区域地物变化对其安全具有较大影响,特别是道路的修建、沟壑的挖掘、滑坡等。由于油气管道分布范围广、周边环境复杂,传统的人工巡检方式存在一定的局限性,因此研究了基于卫星遥感的油气管道沿线地物变化检测。在综合考虑空间信息和算法自动化程度的基础上提出一种改进的基于多特征融合和主动学习的油气管道沿线地物变化检测算法。首先利用基于自适应阈值算法选择初始训练样本,然后利用梯度提升树、k近邻和极限随机树集成结构进行未标记样本的类别判定,并基于边缘采样的主动学习算法进行未标注样本增选。在样本