论文部分内容阅读
本论文针对与三条二氧化碳捕集技术路线(即燃烧后脱碳、燃烧前脱碳和富氧燃烧技术)相关的两类气体,即CO2和O2,的分离和富集展开研究。选用致密离子导体膜和陶瓷吸附剂作为分离载体。第二章建立了一个分析CO2/O2渗透通过包含混合电子-离子传导氧化物陶瓷(MCOC)相和熔融碳酸盐(MC)相的双相膜模型。并推导出了描述一些特殊情况下纯CO2的渗透模型。结果显示,当CO2和O2一起渗透时,CO2的渗透通量比相应的纯CO2渗透时的大一个数量级。CO2和O2的渗透通量都随着反应侧O2分压和MCOC相的电子电导率(σh·)的增大而增大。当MCOC相的电子电导率很小时,例如σh·≤0.1 S/cm,CO2的渗透通量随着MCOC相的离子电导率增大而增大;而当MCOC相的电子电导率很大时,例如σh·>1 S/cm,CO2的渗透通量随着MCOC相的离子电导率增大而减小。对于纯的CO2渗透过程,CO2的渗透通量随着MCOC相的离子电导率增大而增大,随着MC相的体积分数的增加而减小。规则的陶瓷载体的孔结构有利于CO2和O2的渗透。第三章利用直接浸润法合成了致密的Bi1.5Y0.3Sm0.2O3 (BYS)- MC双相膜,并将其用于高温CO2的选择性渗透分离。由于氧离子的传导相中的斜方六面体结构和立方萤石结构之间的可逆相变,在高温CO2渗透实验的初始阶段,需要很长时间才能达到稳态渗透。CO2在双相膜中的渗透通量随着温度的升高而增大(500-650℃),其渗透活化能是113.4 kJ/mol。CO2的渗透通量随着吹扫气流速的增大而增大(25-125 mL/min)。第四章推导了一个一维致密透氧膜反应器模型,并用其对膜反应器中甲烷部分氧化反应(POM)制合成气的过程进行了模拟。采用了燃烧-重整机理描述POM,并且考虑了重整产物H2和CO的氧化。结果表明:考虑重整产物氧化反应的模型比忽视产物氧化反应的模型更合理。如果在反应器中甲烷完全消耗,则将发生飞温。选定反应器进料温度作为主要参考指标考察反应器的各种操作性能和这种现象的关系,并且定义了临界进料温度(BIT)概念。模拟结果显示,当反应器进料温度接近BIT时,可以获得最佳的膜反应器操作性能。第五章利用模型分析了反应条件下离子或混合传导陶瓷膜的氧渗透性能。该模型考虑了不同的氧传输传导机理,例如p型或者n型传输膜,以及不同的化学反应速率。结果表明,无论对p或n型传导机理膜来说,当膜一侧有氧消耗反应发生时,反应侧氧分压随反应速率的增快而降低,而氧渗透通量随之增大。这些变化介于没有化学反应发生和反应达到平衡这两种极限情况之间,并在反应速率极慢或者极快时接近于这两种极限情况。反应速率的增快能导致p型膜的氧传输机理从p向n型转变,而这种转变能使氧渗透通量增大近30倍。第六章利用柠檬酸盐法制备钙钛矿结构SrCo0.8Fe0.2O3-δ(SCF),并利用其制备用于富氧燃烧过程中需要的高温O2-CO2气体混合物。当吸附剂在高温条件下暴露于CO2气体流时,氧气将会从吸附剂内脱附出来,得到一个富含氧气的高温CO2气体流。当SCF吸附剂在空气中再生时,氧气又会被吸附剂吸收。利用XRD和TGA分析结果鉴定了O2脱附过程的碳酸盐化反应机理。最佳的氧气吸附和脱附温度分别为900和850℃。多次吸附/脱附循环实验显示SCF吸附剂具有很高的活性和循环稳定性。