【摘 要】
:
本文主要研究的是多任务优化问题中的任务选择算法。多任务优化问题是指多个优化任务在并发过程中相互进行知识迁移,从而提升各任务自身的优化性能。而在知识迁移前,对迁移的对象任务进行选择具有深刻意义。多任务优化问题中,由于随机选择任务进行知识迁移时会产生大量负迁移,从而导致各任务优化性能下降。因此,本文致力于设计合适的任务选择算法,使各任务能够选择合适的迁移任务进行知识迁移,减少负向迁移影响,提升正向迁移
论文部分内容阅读
本文主要研究的是多任务优化问题中的任务选择算法。多任务优化问题是指多个优化任务在并发过程中相互进行知识迁移,从而提升各任务自身的优化性能。而在知识迁移前,对迁移的对象任务进行选择具有深刻意义。多任务优化问题中,由于随机选择任务进行知识迁移时会产生大量负迁移,从而导致各任务优化性能下降。因此,本文致力于设计合适的任务选择算法,使各任务能够选择合适的迁移任务进行知识迁移,减少负向迁移影响,提升正向迁移效果,从而提升整体优化性能。本论文主要采取的多任务优化框架是基于多种群的演化框架,该框架结构中使用去噪自编码器作为显式的知识迁移方式,其能够将一个种群中的个体通过矩阵变化的方式移植到另一个种群中。文章主要工作是对任务选择问题提出了两种算法思路。第一种算法是实时的任务选择方法。算法使用信任度矩阵来反映任务间相关性。针对已有方法中额外评估代价过高的问题,设计了新的迁移效果信息,能够不耗费任何额外的评估代价。针对单项递增的矩阵更新机制难以反馈准确迁移效果的问题,设计了奖惩机制来更新任务间的信任度矩阵。同时,实时的迁移效果信息实现了信任度矩阵的实时更新和任务选择,提高了知识迁移效率。此外,算法还设计了更加灵活的任务选择机制和迁移机制来提升算法性能。第二种算法是基于精准信任度矩阵的任务选择算法。过于频繁的知识迁移并不适用于所有场合,比如在任务优化性能下降甚至停滞的情况下,容易产生低效迁移和重复迁移。因此,本算法降低了知识迁移频率,在两次迁移间增加固定间隔期。在这种设定下,实时方法中的信任度矩阵由于难以反馈近几代的迁移效果而不再适用。为了解决这个问题,算法主要是设计了更加精准的信任度矩阵计算方式,可以有效反映近几代的任务间迁移效果,同时,为确保精准信任度矩阵的长期有效性,本算法设计了与之配套的强化的迁移效果信息和简单精准的信任度矩阵更新机制,使得算法可以在间隔代数的知识迁移下取得较好效果,提升了算法性能。两种任务选择算法均通过数值实验验证了算法的有效性,对比已有的baseline方法、随机任务选择方法和单任务优化方法,本论文提出的两种任务选择算法具有更好的优化性能。
其他文献
机器人抓取是智能机器人的一个基础功能,也是一个具有挑战性的任务。得益于深度学习的发展,研究者们提出了许多抓取姿态检测算法,然而对于这些深度学习算法而言充实的数据集必不可少。机器人可能在不同环境中移动,当环境变化时,需要创建新数据集并重训练模型以保持网络模型的性能。但是,数据集标注是一个非常消耗资源的过程。主动式学习旨在缓解深度学习算法对大量标注数据的依赖性,主要途径是选择出未标注数据集中最具有信息
对病理图像进行格里森分级作为前列腺癌诊断的金标准在临床中被广泛应用,然而传统的人工诊断结果主观性强,且耗时费力。因此,基于深度学习的格里森分级技术受到了越来越多的关注。目前对该领域的研究存在以下不足:(1)多数研究在数据预处理中忽略了病理图像的噪声,数据集质量较差。(2)现有研究的关注重点在于格里森得分的高低分类(GS=8),忽略了对GS=7的进一步分类。但G3+G4和G4+G3
采用先进的波浪模拟控制技术的造波机系统,能够在实验水域内精准模拟产生波浪,并使其作用于各种模型结构物上,对海岸和近海工程设计、波浪理论的研究等具有重要意义。波浪模拟控制技术属于多学科交叉的技术范畴,涵盖了波浪理论、运动控制、机械构造、信号电子技术等多学科知识。本文根据工程项目中遇到的相关问题,分别对波浪模拟控制系统中的运动控制技术、数据处理方法、软件功能设计中的关键问题进行了深入研究。本文以波浪理
无线通信技术使网络终端得以延伸,万物互联的物联网时代也随之到来,物联网技术的快速发展使多个领域的技术与系统业务融合在一起,为人类的生活生产等活动提供无所不在的服务。智能家居是物联网技术的一个重要应用,随着物联网技术的不断成熟,该产业也由智能单品控制逐步向场景联动阶段发展,用户通过自定义场景联动规则,使各设备间实现互联互通,在此过程中系统内的互操作性也大大增强。用户需求的增加使得系统内的服务数量逐渐
机器学习已被广泛应用于社会生产生活当中,它为我们的生活提供了巨大的便利,也为生产力的发展提供了动力.在众多机器学习模型中,多任务学习模型是能够提高训练效率,降低样本需求的重要分支,在诸多方面都已经有了许多成功应用.但是,多任务学习模型在理论方面仍存在一些不足,已有研究成果通常仅考虑各任务的泛化差距的简单求和形式,所得到的结果通常只能反映模型在所有任务上的平均性能,而不能对每个任务的性能进行单独评估
目的探讨老年心源性呼吸衰竭患者机械通气后早期拔管失败的危险因素及建立预测模型。方法纳入本院心源性呼吸衰竭接受有创机械通气后于24 h内拔除气管插管的年龄≥60岁患者311例,将30 d内再次插管的41例为失败组,成功撤机的270例为撤机组。用多因素logistic回归分析30 d内再次气管插管的危险因素,构建预测模型,用ROC曲线和校准曲线及决策曲线分析验证模型的准确性和获益率。结果失败组院内感染
非编码RNA在许多动植物生命活动中扮演着重要的角色,具有代表性的是miRNA和lncRNA。越来越多的研究表明,miRNA不仅可以与mRNA相互作用,还可以与lncRNA相互作用,影响生物学过程。目前对于miRNA和lncRNA的研究主要集中在人和动物上,对于植物的miRNA和lncRNA研究相对较少,而对植物miRNA和lncRNA相互作用的研究就更少了,且分散在不同物种中。植物miRNA和ln
随着人工智能时代的到来,人们对于机器设备的期望不再只停留于科学计算,如何让计算机更加智能高效成为更多科技从业者的工作目标和价值追求。其中,情感智能计算是改善人机交互的重要组成部分。但目前智能情感计算的发展仍然面临严峻的挑战,包括多模态特征使用不充分、情景信息挖掘不完全等,导致情感识别率较低。本文基于目前计算机领域和心理学相关研究成果,模拟现实生活中人类情感的表达方式,提出基于情景注意力神经网络的多
具有强大探索能力和自主学习能力的深度强化学习(Deep Reinforcement Learning,DRL)是实现自主机器人行为控制的重要技术之一。在动态环境中,高维度的连续决策空间常常使机器人控制策略的学习过程陷入局部最优。此外,深度学习遵循“端到端”的训练理念缺乏对机器人关节之间依赖关系的解释。针对机器人的维度诅咒的问题,本文提出了基于注意网络的可分解策略-值网络方法(Decomposed
近年来,针对智能体或多智能体系统的研究已经成为当前人工智能领域的研究热点之一。在多智能体系统中,多个智能体往往需要通过交互(例如,合作、竞争等)完成目标任务。本质上,智能体之间的高效交互可以通过分析并预测其他智能体的行为实现,进而提升整体系统任务完成的速率和成功率。其中,一种广泛使用的方法是利用智能体历史交互信息构建对手行为模型来预测当前交互过程中相关智能体的策略或行为。然而,该类方法需要在大量的