论文部分内容阅读
稠油加热举升过程中,容易与水乳化形成乳状液,可根据稠油粘度的变化合理控制加热开关,以及加热的温度,但是不同稠油乳化能力的差异使得加热条件难以控制。因此,本论文以胜利油田提供的八个稠油为研究对象,研究稠油乳化能力差异原因。同时建立了稠油HLB值的测定方法,从界面层的角度解释含水率反相点差异的原因,为油田根据稠油的性质合理控制生产条件提供理论指导。取得的成果有:一方面,找到了粘度和温度对反相点的影响规律,即,含水率反相点随着乳化温度的升高和稠油粘度的减小而增大,且以40℃为界,温度小于40℃含水率反相点随着温度的升高增大的幅度大于温度大于40℃含水率反相点随温度升高增大的幅度;稠油粘度越大,相同含水率的乳状液的增粘倍数越大,反相点时增粘倍数越小。另一方面,基于稠油HLB值测定原理,油水界面膜是由三部分组成的:沥青质聚集体、聚集体之间的―链节‖以及极性官能团,其中聚集体之间的链节是油水界面膜中最薄弱的部分,稠油HLB值越大,说明极性官能团越多,油水界面层中活性组分聚集体以及聚集体之间―链节‖越多,亲水性越强,在相同的条件下可与更多的水分子作用,乳化水量增多,含水率反相点越大。稠油采出液大部分以W/O乳状液的形式存在,给集输和加工带来困难,因此常采用各种破乳方法对采出液破乳,但不同稠油采出液的稳定性不同,使得破乳方法的选择以及破乳条件的控制难度加大。因此,本论文围绕乳状液稳定性差异原因展开相关研究;并筛选普通稠油和超稠油适合的破乳剂,并对破乳机理进行研究,为油田根据稠油的性质合理选择破乳条件提供理论指导。取得的研究成果有:一方面,W/O乳状液的稳定性随着液滴粒径的减小以及液滴分布均匀程度的增大而增大,且多重乳化现象越严重,乳状液稳定性越好;界面扩张模量、界面张力和zeta电位共同作用,影响乳状液的稳定性,界面扩张模量越大、界面张力越小、zeta电位越大乳状液越稳定,且扩张模量与SV值的关联性最好。另一方面,非离子型破乳剂的破乳效果优于离子型破乳剂的破乳效果,能够显著降低油水界面张力、界面扩张模量以及zeta电位,破乳剂主要通过降低普通稠油界面膜的粘弹性来达到破乳的作用,通过降低超稠油油滴表面的带电量来达到破乳的作用。