论文部分内容阅读
心肌缺血再灌注(ischemia/reperfusion, I/R)损伤是缺血心肌在恢复血流后可引起心肌超微结构、功能、代谢等各方面的进一步损害,并存在着不同程度心肌细胞凋亡的现象,是临床十分常见的病理过程。导致心肌缺血再灌注损伤的机制是多方面的,氧化应激、细胞内Ca2+超载、线粒体损伤和中性粒细胞活化都参与了心肌结构与功能的改变。如何减轻再灌注造成的损伤,已成为当前心血管疾病研究领域的热点问题。而线粒体的结构和功能改变在心肌缺血再灌注损伤中起关键作用。线粒体是真核细胞中重要的细胞器,因其在能量代谢和细胞凋亡的关键作用,线粒体形态结构和功能动力学研究已成为心血管疾病研究热点。最新研究发现线粒体内外膜上分布着一些通道,这些结构在细胞损伤时可能被激活并发挥一定生物学效应,甚至可以决定细胞的生死存亡。这些通道主要有线粒体通透性转换孔(mitochondrial permeability transition, MPTP)线粒体钙转运体(mitochandrial Ca2+ uniporter, MCU)和线粒体ATP敏感钾离子通道(mitochandrial ATP-sensitive potassium channel,MitoKATP)等。此外线粒体是高度动态的细胞器,线粒体的结构和形态动力学都将决定线粒体功能,甚至参与到细胞凋亡的信号通路中。有研究提示缺血再灌损伤时伴有线粒体结构和形态动力学的改变,而其中的作用机制还需进一步探讨和研究。B型利钠肽(B-type natriuretic peptide, BNP)是利钠肽家族中一种重要的生物活性物质,具有强大的排钠、利尿、舒张血管和抑制肾素—醛固酮系统激活等作用,已是心力衰竭等心脏疾病的重要生物标记物。BNP可作用于心肌细胞上分布的相应钠肽受体,可激活鸟苷酸环化酶产生环磷酸鸟苷参与细胞信号转导通路,产生相应的生物学效应。人工重组BNP已经美国SFDA批准可用于治疗急性失代偿性心力衰竭。最新研究提示BNP可通过作用于线粒体途径来减轻心肌缺血再灌注损伤,发挥保护心肌细胞结构和功能作用,并且BNP这种保护作用可能与线粒体ATP敏感钾离子通道有关。BNP在临床上治疗心力衰竭和其他心脏疾病的研究和评价还不明确,尤其BNP对心肌缺血再灌损伤的作用机制和作用靶点研究国内外鲜有报道。为了阐明BNP参与心肌细胞中和线粒体相互的作用机制,本研究以离体培养的心肌细胞缺血再灌模型和心肌H9c2细胞系细胞骨架破坏模型作为实验对象,从细胞和分子两个水平研究BNP对线粒体的功能动力学和形态运动动力学作用机制,并对之相关的信号通路进行了探讨。本研究包括以下内容:首先建立离体培养的心肌细胞缺血再灌模型,采用了流式细胞术、激光共聚焦显微镜和蛋白免疫印迹等手段,实验结果提示BNP可减轻缺血再灌损伤导致的心肌细胞凋亡,抑制线粒体膜电位的丢失和活性氧的生成,并可以抑制Bax和Smac/DIABLO凋亡蛋白的表达,减少线粒体cytochrome c的释放,增加Bcl-2抗凋亡蛋白的表达。结果提示BNP在心肌缺血再灌过程中可能通过抑制线粒体通透性转换孔和线粒体钙转运体的开放,从而发挥保护心肌细胞作用,而BNP的这些作用与通过激活PI3K-Akt信号通路有关。其次建立了心肌细胞H9c2细胞骨架破坏模型,通过细胞活性检测,细胞指数实时测定和细胞成像等研究手段和方法,证明了BNP可以保护心肌细胞的线粒体功能和形态运动动力学,可减轻细胞骨架微管破坏导致的心肌细胞凋亡,抑制线粒体膜电位的丢失和活性氧的生成,并可以抑制线粒体cytochrome c的生成和释放,维持线粒体的空间分布和运动。综上所述,本研究的主要发现和结论是:1、BNP在心肌缺血再灌过程中可通过抑制线粒体通透性转换孔和线粒体钙转运体的开放,维持线粒体功能动力学,减轻心肌细胞损伤;2、BNP可激活PI3K-Akt信号通路,抑制细胞内线粒体相关凋亡通路,保护心肌细胞;3、BNP可通过稳定细胞骨架微管成分来维持线粒体形态结构动力,保护心肌细胞。本研究为BNP用于临床心脏疾病的治疗和阐明线粒体与心脏疾病关系提供了实验研究依据。