盐酸多西环素与氟苯尼考复方混悬液的研制及其对猪链球菌CVCC607药动学—药效学同步模型研究

来源 :华中农业大学 | 被引量 : 0次 | 上传用户:hy85323
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
猪肺炎性疾病是目前集约化养猪业中危害极大的一类呼吸道传染病,且病因复杂,常表现为多种病原菌的继发感染和混合感染。临床上,单一用药往往难以有效控制猪肺炎性疾病,应用两种抗菌药物发挥药物间的相互作用可适当提高疗效和减少耐药菌的产生。本课题利用盐酸头孢噻呋、盐酸多西环素、甲磺酸达氟沙星、酒石酸泰乐菌素、磷酸替米考星和氟苯尼考等治疗肺炎性疾病常用药物分别对猪链球菌、猪胸膜肺炎放线杆菌和副猪嗜血杆菌的药敏试验和联合药敏试验,结合药物间的配伍禁忌,筛选出最佳的联合用药组合为盐酸多西环素和氟苯尼考。临床上,盐酸多西环素和氟苯尼考在猪体内的生物利用度低和半衰期短,使用时需要加大给药剂量和多次给药,不仅治疗效果不理想,还给兽医工作者们带来了极大的不便,为了提高二者对猪肺炎性疾病的治疗效果,本课题利用羟丙基-β-环糊精、聚乙烯吡咯烷酮和羟丙基甲基纤维素等药用辅料结合饱和水溶液法和高压均质技术研制盐酸多西环素与氟苯尼考复方混悬液,同时开展该复方混悬液对猪链球菌cvcc607的药效学-药动学同步模型研究,为临床使用制定科学合理的给药方案,为了开发治疗猪肺炎性疾病新型高效的药物以解决猪肺炎性疾病的治疗难题。1.联合用药组合的筛选参考临床实验室标准化研究所(CLSI)制定的相关标准,采用微量肉汤稀释法分别测定盐酸头孢噻呋、甲磺酸达氟沙星、盐酸多西环素、酒石酸泰乐菌素、磷酸替米考星和氟苯尼考对临床分离的6株猪链球菌、1株猪胸膜肺炎放线杆菌和6株副猪嗜血杆菌的最低抑菌浓度(MIC)。在此基础上采用棋盘法进行联合药敏试验测定抗菌药物间的相互作用,选取具有协同作用或相加作用的药物组合,同时研究抗菌药物在猪体内的处置过程,选取药动学参数接近的一组药物组合。试验结果表明,盐酸多西环素和氟苯尼考对上述临床分离菌的MIC分别为0.125~1 μg/mL和0.25~1μg/mL,二者较其他抗菌药物有较好的敏感性,联合用药时对链球菌、胸膜肺炎放线杆菌以及副猪嗜血杆菌均表现出一定的协同作用或相加作用,且二者的药动学参数较为接近,药物间也无理化性质的配伍禁忌,故选取盐酸多西环素与氟苯尼考研制复方制剂。2.盐酸多西环素与氟苯尼考复方混悬液的研制采用饱和水溶液法结合高压均质技术研制盐酸多西环素与氟苯尼考复方混悬混悬液。采用单因素对照试验筛选出最佳的主分子羟丙基-β-环糊精(HP-β-CD)、表面活性剂聚乙烯吡咯烷酮(PVP)以及助悬剂羟丙基甲基纤维素(HPMC)等的用量;运用高效液相色谱法(HPLC)测定药物包合率;按照兽药典中推荐的“转桨法”测定盐酸多西环素和氟苯尼考在PBS缓冲液(pH=7.4)中的释放度;考察混悬液的外观性状、通针性、沉降体积比、重分散性、pH值、靶动物注射部位的刺激性和溶血性等制剂评价指标;最后研究复方混悬液的加速和长期稳定性。结果表明:本课题成功研制出盐酸多西环素与氟苯尼考复方混悬液,其中,羟丙基-β-环糊精(HP-β-CD)、盐酸多西环素、氟苯尼考的用量比例为3:1:1、表面活性剂含量为5%、助悬剂含量为0.25%;盐酸多西环素和氟苯尼考的包合率分别为45.28%、89.69%;释放度试验显示盐酸多西环素和氟苯尼考在PBS缓冲液中具有一定的缓释性能;沉降容积比为0.999、pH值为5、通针性和重分散性良好、注射部位无刺激性和溶血性现象等均符合兽药典中对混悬液的相关规定;加速试验和长期稳定试验结果表明本混悬液在避光保存条件下稳定性良好。3.药效学-药动学(PK-PD)同步模型研究分别建立了血浆和肺泡灌洗液中盐酸多西环素和氟苯尼考的高效液相色谱(HPLC)检测方法,考察检测方法的线性、灵敏度、特异性、回收率和精密度及稳定性。给猪皮下接种约3~5mL量的1.2×109 CFU/mL猪链球菌cvcc607建立仔猪患病模型。给患病猪和健康猪肌注0.2 mL/kg的盐酸多西环素与氟苯尼考复方混悬液后分别在不同时间点采集血液和肺泡灌洗液进行浓度测定。采用Winnonlin药动学软件对药物浓度数据进行拟合。采用微量肉汤稀释法考察盐酸多西环素与氟苯尼考联合用药时在肺泡灌洗液中的最低抑菌浓度,并在此基础上配制系列浓度盐酸多西环素与氟苯尼考肉汤进行杀菌试验,在不同时间点分别取出100 μL,系列稀释后采用平板计数法绘制杀菌曲线确定盐酸多西环素与氟苯尼考联合用药时的抗菌类型。把不同时间点采集的肺泡灌洗液过滤除菌后,接种猪链球菌cvcc607,放入细菌培养箱培养。分别在不同时间点采用平板计数法计数活菌数并绘制间接体内杀菌曲线。通过Winnonlin软件模拟半体内AUC/MIC值与抗菌疗效之间的关系,确定PK-PD模型方程,计算给药剂量和模拟给药间隔。结果表明盐酸多西环素与氟苯尼考在健康猪和患猪链球菌病体内均符合吸收一室模型,其中盐酸多西环素和氟苯尼考在患病猪肺组织中的相关药动学参数如下:吸收半衰期(T1/2ka)分别为0.290±0.054 h和0.178±0.069h;消除半衰期(T1/2ke)分别为 18.074±1.967h和 13.462±2.387h;药时曲线下面积(AUC)分别为 64.069±5.452 h·μg/mL 和 59.973±8.007 h·μg/mL;峰浓度(Cmax)分别为 2.296±0.084 μg/mL 和 2.913±0.177 μg/mL;平均滞留时间(MRT)分别为25.001±5.369 h 和 28.532±6.913 h;清除率(CL)分别为 0.031±0.002 L/h/kg 和0.033±0.004 L/h/kg。盐酸多西环素和氟苯尼考在肺泡灌洗液中的最低抑菌浓度分别为0.125μg/mL和0.25μg/mL,与培养基中所测的数据一致,符合PK-PD模型拟合要求。杀菌曲线显示出盐酸多西环素与氟苯尼考联合用药的杀菌类型为浓度依赖型,拟合PK-PD模型时参考半体内AUC/MIC。通过Winnonlin软件模拟出PK-PD的模型方程为E=2.589-(8.325*C0.909)/(19.7230.909+C0.909)。结合给药方程X=d×(AUCex vivo/MICtested)/(AUCin vivo/MICtarget)(MICtarget选取猪链球菌cvcc607)计算出的给药剂量为0.019 mL/kg~0.198 mL/kg,Winnonlin 软件拟合出的给药间隔为 78.787 h。综上所述,本课题成功研制出了盐酸多西环素与氟苯尼考复方混悬液,通过对猪链球菌cvcc607的药效学-药动学(PK-PD)同步模型研究,制定出了一套科学合理给药方案。本研究为治疗猪肺炎性疾病提供一种高效的新制剂,将有助于解决猪肺炎性疾病的治疗难题。
其他文献
随着大功率采煤机的广泛应用,出现了综合机械化开采导致工作面块煤率大幅降低的问题。鉴于块煤独特的经济与环保价值,如何提高综采工作面块煤率是综采矿井急需解决的技术难题
目前大数据渗透到社会的角角落落,正是因为大数据巨大的商业价值,被越来越多的企业列为重点研究对象及产品研发管理革新的重要参考。利用大数据分析,能够总结经验、发现规律、预测趋势,这些都可以为产品研发管理做辅助决策服务,掌握的产品相关的信息数据越多,我们产品的决策才能更加科学、更为精准,产品才能更好地满足客户需求。在大数据时代的驱动下,众多企业在产品研发管理过程中通过对产品数据埋点、用户画像等手段并运用
随着石油价格日渐上涨及芳烃需求量的不断增加,以石油为原料生产芳烃的路线受到极大挑战。因此,探寻一条经济有效的芳烃合成路线势在必行。近年来,随着生物柴油市场的迅猛发展,生物柴油副产物粗甘油的资源化利用成为研究热点。以甘油为原料生产高附加值的芳烃不仅可以为芳烃的生产提供一条新的途径,还可以促进生物柴油的可持续发展。HZSM-5分子筛由于具备独特的孔道结构和可调节的酸性位点,因而在甘油芳构化过程中具有良
随着城市发展的不断加快,城市道路堵塞问题逐渐突出,尤其在早晚上下班高峰期愈发严重。交通流理论通过对道路交通流进行分析和研究,研究交通流内在规律,揭示交通拥堵问题的产
Donor-Acceptor(D-A)环丙烷是一种高效简洁的有机合成砌块,广泛应用于构筑多种碳环与杂环结构单元。本论文探讨了路易斯酸催化下的D-A环丙烷与噁唑类化合物的环化反应,主要内
本文主要论述的是我在读期间对创作进行思考与研究的过程和体会,从创作的构思、题材、形式的选择,传统没骨画和国外水彩画的借鉴,到传统绘画技巧和材料的研究,结合我的创作提
当前,煤矿综采工作面采煤设备逐渐趋向于自动化、智能化和无人化,但为综采工作面提供动力的移动变电站、泵站等重型设备,仍大量采用有轨绞车钢丝绳牵引方式运输,存在运输效率
分布式X射线光源,又称X射线多光源,是指在单个真空腔体中按照一定空间序列排布多个X射线点源的真空装置,该装置可根据特定的时间和空间序列触发产生X射线,为新型X射线光源和C
生物酶的活性容易受到环境因素的影响,尤其是温度的升高会改变或破坏酶的蛋白质结构和肽键形态,从而导致酶的变性。寻找有效的途径来维持酶的天然构象,是当前需要解决的关键
玻璃幕墙具有采光性好、美观等优点,广泛应用在办公楼、商场和体育馆等高大建筑中,但由于其隔热性差、透光性强导致其结构散热量大,造成了其建筑的夏季制冷负荷和冬季热负荷大。据统计,建筑能耗约占社会总能耗30%,其中建筑围护结构占建筑能耗的50%,而玻璃幕墙类围护结构能耗尤为严重。针对我国“十三五”规划提出的应对全球气候变化以及绿色低碳发展目标,开发新型玻璃幕墙技术已成为发展绿色建筑、生态建筑的前提条件。