论文部分内容阅读
溶胶凝胶法制备α-Al2O3纤维的过程中存在两个主要问题:一是过渡相氧化铝转变成α相时易形成蠕虫状结构,影响纤维的致密性;二是α-Al203烧结时易发生晶粒粗化,影响纤维的高温力学性能。本文采用均相沉淀法制备纳米级α-Al2O3,并将其作为籽晶引入至铝溶胶中,旨在提高α-Al2O3的形核密度并降低形核温度,抑制蠕虫状结构的产生;在此基础上,继续引入硅溶胶,旨在抑制高温下α-Al203晶粒的长大。通过研究,获得以下主要结论:1.以硫酸铝(Al2(SO4)3·18H2O)为铝源,硝酸铁(Fe(N03)3·9H2O)为铁源,甲酰胺(NH2CHO)为沉淀剂,采用均相沉淀法制备纳米α-Al2O3粉末。通过调控煆烧温度、Fe/Al摩尔比等工艺参数,可以制得分散性好的球形纳米级α-Al2O3。研究发现,影响晶粒尺寸的主要因素是锻烧温度,当锻烧温度为800℃、Fe/Al摩尔比为5/1时,纳米α-Al2O3产物的平均晶粒尺寸为26.2nm。2.将上述纳米α-Al2O3产物的悬浮液作为籽晶引入至铝溶胶中,可显著增加α-Al203的形核密度,并诱导氧化铝直接从无定形态转变为α-Al2O3;此外籽晶的引入还降低了氧化铝γ相→α相的转变温度。当籽晶引入量为1.5 wt.%时,从无定形氧化铝中直接析出α-Al203的温度为700℃,同时γ-Al2O3到α-Al203的相变温度降低了约200℃。由于籽晶的引入增加了α-Al2O3形核位点,相变过程中蠕虫状结构得到了有效抑制,纤维的致密度得到了明显提高。3.硅溶胶的引入显著降低了α-Al2O3的晶粒尺寸。当籽晶引入量为1.5 wt.%,硅溶胶引入量为1.0 wt.%时,纤维在1200℃烧结后的晶粒尺寸由63.5nm降低为50.5nm。与此同时,由于硅溶胶抑制了α-Al2O3临界晶核的形成,导致纤维完全转变为α-Al203的温度由900℃提高到1000℃;此外,硅溶胶阻碍了α-Al203的晶界扩散,因此其对α-Al203的烧结也产生了一定程度的抑制作用。4.采用两步烧结工艺,有助于纤维获得进一步细化的晶粒和致密的结构。第一步高温快速热处理可使纤维完成α相变,并降低纤维的孔隙率;第二步在低于晶粒快速生长的温度下长时间保温,可使α-Al2O3纤维在晶粒尺寸不显著变化的前提下完成致密化。先快速升温至1400℃并保温1分钟,而后在1000℃下保温2小时,可以得到平均晶粒尺寸小于200 nm的致密α-Al2O3纤维。