论文部分内容阅读
气固相反应在工业生产工艺中占有很重要的地位,合适的反应动力学测量仪器是获得基础数据的必要条件。鉴于目前常用的反应动力学分析仪器在等温快速反应分析方面存在的不足,中国科学院过程工程研究所创新研制了应用于反应动力学研究的微型流化床反应分析仪(MFBRA)。该仪器具有快速升温和等温微分反应特性,适应于快速复杂反应的测试,且扩散抑制作用低,适用于含水蒸汽等特殊气氛的反应动力学分析,形成了与非等温动力学分析测试互补的反应分析方法和分析仪器。
本课题扩展微型流化床反应分析方法和仪器的应用。针对典型的固-固反应(石墨还原氧化铁),分别采用热重分析仪(TGA)与MFBRA进行对比测试,考察MFBRA对固-固反应的适用性。根据程序升温反应失重与气体释放特性推测出的反应机理为:反应初始阶段发生直接固-固反应,生成CO2和Fe3O4;反应主体阶段,石墨与CO2发生气化反应生成的CO继续还原Fe3O4,生成Fe。求得反应初始时刻的活化能为Ex=0=520kJ·mol-1,机理函数为G(x)=(1-x)2,为二级反应。通过MFBRA中石墨等温还原氧化铁实验,根据温度和气速对气体生成规律的影响,验证了TGA中推测的还原反应机理,求得反应体系整体活化能为222kJ·mol-1,整体反应的机理模型为成核与生长,动力学方程为dx/dt=1.19×109×exp(222/RT)×(1-x)。
为拓宽MFBRA的应用领域,本论文开展了适用于化学气相沉积反应的新型MFBRA前期工作。首先考察射流管和导流管结构对传统MFBRA颗粒流体流动特性的影响,在此基础上开展了内循环微型流化床流动特性研究的冷态基础实验,对操作参数和反应器结构进行了优化。结果表明,当环隙区底部压力大于导流管区底部压力,且环隙区通入足够量的气体松动其中的颗粒床层时,即可实现颗粒的环流循环。初始加料床高为45-75mm时,可获得较宽的操作气速。当导流管直径为15mm、进气管高度为30mm和采用环形分布板结构时,可获得较宽的颗粒循环操作气速与较高的循环量控制范围,且导流管区与环隙区之间的窜气量相对较小。这些结果为设计适用于化学气相沉积反应的内循环微型流化床反应器奠定了基础。