【摘 要】
:
热刺激响应性水凝胶材料是一类对外界施加的热场能够做出相应结构或性能改变的智能材料。传统的热刺激响应性水凝胶,由于网络结构的不均匀性以及缺乏在高应力水平下能够耗散能量的结构,为此大多应用在药物释放、组织工程、智能变色窗户等对力学性能要求比较低的领域。近些年来,随着热刺激响应性水凝胶在驱动器、形状记忆元件、防护器件等工程领域的应用需求,不仅要求材料本身具有高的模量和韧性,而且要求凝胶在热刺激前后有显著
论文部分内容阅读
热刺激响应性水凝胶材料是一类对外界施加的热场能够做出相应结构或性能改变的智能材料。传统的热刺激响应性水凝胶,由于网络结构的不均匀性以及缺乏在高应力水平下能够耗散能量的结构,为此大多应用在药物释放、组织工程、智能变色窗户等对力学性能要求比较低的领域。近些年来,随着热刺激响应性水凝胶在驱动器、形状记忆元件、防护器件等工程领域的应用需求,不仅要求材料本身具有高的模量和韧性,而且要求凝胶在热刺激前后有显著的力学性能变化。通过热刺激敏感基团以及水凝胶结构设计,制备具有热致变硬功能的水凝胶材料是软物质材料领域的研究热点。在新型热致变硬水凝胶材料的制备仍存在以下亟需解决的问题:(i)制备高模量、高韧性热致变硬水凝胶材料的工艺简单。水凝胶本身力学性能的提高有利于拓展新型热致变硬水凝胶材料在工程领域的应用。通过在高分子侧链上接枝具有热刺激敏感的大分子等方法可以制备具有高韧性的热致变硬水凝胶材料,但是其制备工艺复杂不适合大批量生产,且凝胶的模量比较低。(ii)在盐溶液环境中的结构和性能稳定性。利用疏水缔合和离子交联协同作用可以实现水凝胶的热致变硬效应,然而这种靠离子交联特性的水凝胶在具有盐溶液环境中使得水凝胶的性能大幅度的降低,从而会丧失水凝胶的热致变硬效果。本论文围绕上述问题展开研究工作,提出利用疏水缔合和氢键协同作用来实现水凝胶的热致变硬效应,主要内容包括以下两个部分:(i)利用带有温敏性和能形成氢键结构官能团的氨基酸衍生物单体与丙烯酰胺单体来设计一种在盐溶液环境中具有高模量、高韧性的热致变硬功能的水凝胶材料。该水凝胶具有优异的力学性能,如断裂应变可以达到~2050%,断裂应力达到~2.5MPa,拉伸功可达到22.3 MJ/m~3,可以与现有报道的最强水凝胶(DN水凝胶)、天然橡胶和软骨的力学性能相媲美。(ii)该水凝胶材料在具有超高杨氏模量(~22MPa)的情况下,经过热处理后其拉伸强度、断裂功和模量仍可分别提高至初始的4倍、2倍和13倍左右。该性能有望在对模量要求比较高的,且加热前后力学性能变化比较大的工程器件领域上发挥作用。(iii)分子结构对照和表征手段表明,水凝胶的热致变硬机制来源于在加热的过程中,疏水相互作用力稳定了高分子链之间的氢键从而诱导高分子网络聚集产生相分离结构,实现水凝胶材料的力学性能增强。
其他文献
史料实证素养作为历史学科核心素养的重要部分,更是其他素养实现的必要途径。为此,以史料实证为出发点探究其在高中历史课堂中的落实,不仅能够达到课程立德树人的根本任务,同时运用有效史料建构教学过程,促进学生理解和领悟历史知识,发展历史思维,形成实证意识。本文基于“两宋的政治和军事”一课,对史料实证素养的落实做出分析,以促进学生史料实证素养的培养和发展。
股票市场作为金融市场的重要组成部分之一,几十年来一直备受关注。对股票指数涨跌趋势的预测和交易模型的收益分析一直是研究者和投资者关注的焦点。对于股票指数涨跌趋势的预测,本文通过构建一个基于遗传算法优化的卷积神经网络和长短时记忆的混合模型来展开研究。首先改进了用作模型输入的三维张量,然后使用卷积神经网络进行特征提取,再利用长短时记忆网络对提取出的特征向量进行分类预测。最后,使用遗传算法对卷积神经网络和
人民生活水平的提高带来了汽车需求的提升,随之而来的是频发的交通事故,研发安全的汽车辅助驾驶系统成为了当务之急。而车道线检测是汽车辅助驾驶的重要组成部分,车道线信息在汽车行驶过程中是车辆有无偏离车道的重要参考,对汽车安全行驶有重要意义。为此,研究人员在车道线检测问题上展开了深入研究。传统的车道线检测算法依靠人工设计特征,鲁棒性较差,且无法应对复杂的城市街道背景。随着深度学习技术的崛起,以卷积神经网络
深度学习技术的出现降低了数字媒体编辑的技术门槛,在影视制作、生活娱乐等领域具有良好的应用价值,同时也存在潜在的安全隐患。近年来,Deepfake换脸技术受到广泛社会关注,由其制造的恶意虚假视频的传播对社会舆论和身份信息安全造成了极大的威胁和冲击。由于Deepfake换脸视频带来的安全问题,换脸视频篡改检测已逐渐成为研究热点。目前的换脸视频篡改检测算法在训练数据库上可以达到良好的库内检测性能,但在跨
水凝胶是一种具有三维网络结构的高分子聚合物材料,能够容纳大量的水而仍然保持不溶性,并且具有良好的亲水性、渗透性、生物相容性和低摩擦系数等特性。因而水凝胶在生物医学等领域得到广泛利用,如药物输送、组织工程、隐形眼镜、伤口愈合、生物传感器膜、微流体阀、流体吸收剂等。然而,目前大多数水凝胶的力学性能和结构稳定性较差,而很多力学性能较好的水凝胶生物相容性较差,使其应用受到了很大程度的限制。因此,解决上述水
随着电力负荷的日益增长以及城市负荷密度的快速发展,20kV电压等级配电网将成为我国中压配电网发展的必然趋势。相比于10kV的城市配电网,20kV中压配电系统通常以全电缆送电为主,更大的供电半径导致系统对地电容电流也会更大,传统的阶段式零序过电流保护方案对于单相高阻接地故障的情况将失效。同时,不同中性点接地方式下的单相接地故障所表现的故障特征也不尽相同,尤其是对于零序分量而言。而现有对于中压配电网的
森林火灾以及生物质的焚烧使富氮生物炭在自然环境,尤其在土壤和沉积物中不断蓄积。富氮生物炭孔隙发达,表面电子活度强,可吸附、固定毒害污染物,并产生相互作用。富氮生物炭中因氮取代碳网结构中碳的位置差异,存在三种不同的构型(吡咯氮、吡啶氮和石墨氮),这些构型氮使富氮生物炭在电子转移或电子对共用等方面表现出显著差异,进而可能影响富氮生物炭与重金属之间的交互作用。为了明确环境中大量存在的富氮生物炭中不同构型
对于新创农村网络零售企业而言,资源不足是制约其持续发展的重要因素。而构建科学的创业网络,有助于为新创农村网络零售企业发展提供丰富的资源土壤,这能够促进企业绩效的提升。基于此,本文通过调研处于电商产业园的农村新创网络零售企业,并收集了相关数据,采用AMOS软件检验变量间的直接作用关系,采用SPSS软件检验带有调节效应的变量关系,旨在为新创农村网络零售企业提升企业绩效提供理论指导。
得益于低廉的成本和丰富的地壳储量,钾离子电池被视为是锂离子电池潜在的替代者。但是,相比于Li+,K+不仅扩散速率更慢,而且半径更大,在材料中进行脱嵌时造成的体积膨胀更加剧烈,对结构的破坏更为严重,尤其对于钾离子电池负极材料。钴基氧化物、硫化物由于具有较高的放电比容量被视为钾离子电池的最佳负极材料候选者之一,但是由于K+脱嵌的过程对结构破坏十分严重,导致其倍率性能差、循环寿命短。而通过合理的结构设计
人脸识别是进行身份验证的一项关键技术,能够快速、便捷、高效地对目标人脸完成鉴权。过去十几年来,在深度学习的推动下,人脸识别技术实现了飞跃式的发展。尽管如此,人脸识别技术的发展仍然受到姿态、光照、遮挡等因素的制约,其中姿态变动的影响尤为显著。因此,相当多的科研人员投入跨姿态人脸识别研究之中,从网络结构设计、损失函数改进、训练数据利用方式等多角度进行探索。基于前人的工作并针对其缺陷,本文从以上多个角度