论文部分内容阅读
企业离不开市场,激烈的市场竞争、全球化的经济浪潮导致企业必须以客户为中心,掌握更多更准确的客户信息,对客户个性化需要作出快速反应,为客户提供更便捷的购买渠道和更好的售后服务与经常性的客户关怀,这就是客户关系管理(Customer Relationship Management)即CRM的核心内容。随着网络和信息技术的发展,企业可获得的信息量日益膨胀,呈几何倍增长,CRM面临着信息爆炸所带来的严峻挑战。如何从庞杂无序的数据中获取真正对企业有用的信息,发现数据背后隐藏的模式,从而指导企业的生产经营实践,这就是数据挖掘的任务所在。CRM的实施需要强大的技术支撑,数据挖掘以其从纷繁、复杂的数据中提取有用知识的强大功能而在CRM中有着广泛的应用。在CRM中,数据挖掘要发现的是商业活动中各个因素与客户行为之间的不直观的关系。因此,数据挖掘要想在商业活动中真正起到作用就必须与基本的商业过程关联起来。数据挖掘技术在CRM中的应用主要体现在新客户开发、客户效益分类、交叉销售及预测、顾客维系(流失分析)、顾客细分、客户赢利性识别等方面。本文将统计学的思想、方法和技术贯穿于数据挖掘整个过程之中,分别从理论和实证两个方面研究和验证了统计数据挖掘技术在CRM中的应用。文章回顾了前人对CRM和数据挖掘的研究成果,从CRM和数据挖掘的演变过程、发展现状来论证CRM的进一步发展离不开数据挖掘作为技术支撑。本文的理论研究部分定义了CRM和统计数据挖掘的内涵,进一步论证了统计数据挖掘技术在CRM中的适用性并提出了基于统计学的数据挖掘流程以数据挖掘模型的建立和实现方法。文章的实证分析部分分为两章,分别为数据挖掘在CRM中应用的两个方面即客户细分和交叉销售及预测。两章均以电信CRM为例,运用统计数据挖掘技术建立了电信客户细分模型和电信增值业务的交叉销售和预测模型,并结合企业的实际情况对模型结果进行了分析和解释。研究结果可以为电信企业制定科学有效的营销策略提供依据,从而提高电信企业的CRM水平,提升企业的竞争能力。文章对企业如何在CRM中应用统计数据挖掘技术具有一定的指导意义。