论文部分内容阅读
伴随着电子、计算机以及网络技术的不断革新,我们已经生活在一个信息技术时代,科学技术的进步使我们生活更加便利化,对人们的生活方式带来了深远的影响。在电子应用中,毫米波因其具有独特的优势而广受欢迎,首先在毫米波频段应用极其少,来自不同应用的干扰较少,另一方面毫米波具有可用频谱非常丰富。毫米波具有一个非常大的优势在于,因毫米波的波长更短,相比较于射频收发机设计,毫米波芯片更容易全集成。本文研究了毫米波频段的压控振荡器,研究InPHBT工艺中毫米波压控振荡器的设计与优化,实现低噪声低功耗的频率源,在国内外学者研究的基础上,对毫米波芯片进行了深入分析和研究,尤其对工作与47/94GHz VCO进行了更加全面细致的分析及设计。本文主要的研究内容分为两部分。首先,本文主要集中对当前毫米波频段的划分以及应用背景进行分析,对当前毫米波VCO的研究现状及进行全面的、深入的调研。在当前学者的研究基础上提出新的VCO结构。其次分析了两种振荡器模型及其起振条件,分别是反馈型放大器模型和负阻模型,通过对模型的分析,理解了振荡器的基本原理。随后介绍了 VCO设计中重要的性能参数,并分析了重要参数之间的冲突和权衡,这是设计时所需要考虑的因素,减小相位噪声是VCO设计的重点。随后分析了相位噪声模型,提出了减小相位噪声的方法。最后分析了 Colpitts拓扑结构。随后分析讨论了毫米波电路设计中关键的无源元件,包括电感,电容,微带线,巴伦。讨论了在毫米波频段电路设计中,如何设计出具有较好高频特性的无源器件并应用于电路设计中。最终设计了以下两种不同中心工作频率VCO电路:1.基于InP HBT工艺设计了一种中心频率工作于47GHz的Colpitts结构宽带压控振荡器,运用了变容管阵列,该VCO在全频带内具有5dBm以上的输出功率,最高达到9dBm。电路输出频率为41.3GHz~55GHz,调谐范围为13.7GHz,并且具有相对较好的调谐线性度,相位噪声的范围为-61.277~-89.039dBc/Hz@1MHz,此VCO调谐频率范围比达到28%。2.基于InPHBT工艺设计了一种单端Colpitts压控振荡器与倍频器集成的电路。在0~1.1V电压范围内,输出频率为96.4~101.6GHz,调谐范围为5GHz,输出端口为50欧姆时,输出功率在-9dBm以上,中心频率为1MHz时,相位噪声为-76.3dBc/Hz。该压控振荡器适用于W波段应用。