基于超薄金属透明电极的钙钛矿/晶硅叠层电池性能研究

来源 :宁波大学 | 被引量 : 0次 | 上传用户:flexhansen
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
叠层太阳电池,采用宽带隙顶电池结合窄带隙底电池,可减少高于带隙的高能量太阳光的热化损失,以及低于带隙的低能量太阳光不能被吸收的损失,提高电池光电转换效率(PCE)。近年来,以钙钛矿电池(PSC)为顶电池的叠层太阳电池光电转换效率快速提升,引起人们广泛关注。具有低渗透阈值厚度的超薄银(Ag)薄膜,因具有低损伤、低成本制备、优异光电特性等优点,是半透明钙钛矿电池的优选透明电极。然而,超薄银电极近红外波段透过率较低,影响底电池及叠层电池光电转换效率。本论文采用Cu种子层策略,降低超薄Ag薄膜阈值厚度。进一步将其作为钙钛矿电池透明电极,研究半透明钙钛矿电池及叠层电池性能。全文主要内容如下:1.研究了Cu种子层对Ag薄膜生长行为及特性的影响。通过引入1 nm的Cu种子层,Ag薄膜的渗滤阈值厚度降低到5 nm。5 nm Ag薄膜具有低表面粗糙度(RMS=0.241 nm),宽光谱高透过(Tave(400-1200 nm)=70.46%),高电导(Rs=32Ω/sq)等特性。然而,进一步将Cu种子层厚度从1 nm降低到0.5 nm,Ag薄膜特性几乎没有变化。2.将上述超薄Ag薄膜作为钙钛矿电池透明电极,并系统研究了Ag薄膜厚度对钙钛矿电池伏安性能及光学特性的影响。研究发现,采用Cu(1 nm)/Ag(6nm)电极的半透明PSC的PCE达到14.5%,为厚Ag电极参比电池PCE的88%。通过进一步引入Zn O光学耦合层,半透明PSC在800-1200 nm内平均透过率提高到58.6%,从而提高底电池光电转换效率。最后,采用半透明PSC顶电池和同质结晶硅底电池构成的四端叠层太阳电池PCE为19.0%,高于任一子电池。此外,还提出了将5 nm Ag电极结合Ag栅线,以及采用较高折射率的光耦合层等策略,以进一步提高叠层太阳电池的光电转换效率。
其他文献
2022年,在各项政策"稳字当头"背景下,商业银行利润增速和资产质量将保持基本稳定,资产负债结构持续优化。2022年也是"十四五"规划推进实施承上启下的关键之年,新旧动能转换加快,新业态、新结构和新增长点有望持续蓄势聚力,对商业银行来说,这将是"转型深化"的关键之年。中国经济进入新发展阶段,先进制造业和战略性新兴产业成为经济发展新动力和新赛道,长三角、京津冀、粤港澳大湾区、成渝地区双城经济圈已成为
近几十年来,随着工业的发展,社会经济取得了前所未有的发展,与此同时,环境污染问题成为全社会关注的焦点。重金属对水质的污染是环境污染重要来源之一。由于重金属会随着水循环进入土壤,从而造成二次污染。自然界中的诸多生物体也能够对水环境中的重金属具有富集作用,进而通过食物链到达人体,对人类产生巨大的危害。因此,对于重金属水污染的监测、治理受到人们格外重视。净水是治理水质重金属污染的主要途径,目前常用的净水
近年来,酒驾、突发意外等交通安全事故和交通拥塞问题的频繁发生,使得自动驾驶车辆及其应用受到市场更多的关注。其中感知大量的车外环境信息能保证自动驾驶车辆做出正确规划和决策,而图像语义分割作为其关键技术之一成为了研究的热点。大多数场景下的图像语义分割算法追求较高的分割精度,从而使用较大较深的神经网络结构,会导致网络推理速度下降,算法推理时间变长,存储成本增加,不能满足自动驾驶应用的实时性需求。若仅仅采
人体的生理信号如心电、血氧、血压等在一定程度上能够反映出人体的健康状态,对人体的生理参数进行监测具有很大的实用价值。在军事领域,穿戴式生理监测和医疗辅助设备主要用于体征训练和卫勤保障工作,同时又能广泛的应用于日常训练和考核士兵的生理指标。在民用领域,由于现在人群的不良生活的影响,居民的慢性病的发病率持续升高,利用可穿戴设备通过对生理信号的长期监控有助于人体日常活动和生理状态的及时了解和防护,预防慢
与飞机和卫星相比,飞艇有其特定的优势。随着飞艇相关研究的深入以及相关技术的成熟,其在空防系统、近地通信、对地观测方面的应用将会越来越广泛。在对地观测系统中,飞艇搭载各种传感器对地面情况进行长时间、高精度的观测。然而在多飞艇的对地观测系统中,有如下几个规划类的困难亟待解决。(1)多飞艇位置部署问题,是一个三维空间的部署问题,飞艇的高度会同时影响覆盖范围和观测精度这两个部署结果衡量指标,是一个复杂的多
车联网(Internet of Vehicles,IoV)作为物联网(Internet of Things,IoT)的典型应用场景,在智能交通领域发挥着重要作用。在这样的系统中,车辆收集环境传感数据并与其他车辆、路边基础设施、云服务器甚至个人移动智能设备进行通信,以便交换相关交通信息,如车主的地理区域、位置或个人身份信息等敏感信息。5G移动通信技术的飞速发展为车联网系统提供了强大的低延迟通信解决方
近年来,有机污水排放和石油泄漏事故频发,造成水资源严重污染,直接威胁生态平衡和人类健康。迄今为止,人们已经制备了各种炭气凝胶来处理上述污染物。在所有的炭气凝胶中,石墨烯气凝胶因具有极高的比表面积、高的孔隙率、优异的热稳定性和机械性能等优点,受到极大关注并被广泛应用于环境修复领域。然而,利用氧化石墨烯制备石墨烯气凝胶存在一系列的问题,例如:如何抑制石墨烯的团聚问题?如何降低石墨烯气凝胶高成本问题?如
随着全球地铁市场的迅速崛起,地铁的建设也在各个城市火如荼的开启,地铁建设有效的缓解城市堵车问题。地铁建设过程中,往往会面临铺轨基地设置问题,需要在结构顶、中板大尺寸留洞(30m×5m),用以轨道的铺设,铺轨基地洞口水平向尺寸较大,侧墙、顶板往往无法采取独立的支护措施,结构面临坍塌变形风险,在侧向土压力、顶部荷载的作用下,开大洞轨排井处受力及计算与其他未开洞部分存在明显差异,但是目前对地铁车站结构顶
固体氧化物燃料电池(SOFCs)是一种高效、无污染,直接将化学能转化为电能的发电装置,氧化钆掺杂氧化铈(GDC)阻隔层以及阴极材料是影响电池性能的关键材料。本文研究了GDC纳米粉体的量产与GDC阻隔层致密化工艺改进。针对目前钙钛矿阴极材料的Sr元素偏析、Co元素价格较贵现象,测试一种不含Sr、Co元素的Ba0.5La0.125Zn0.375NiO3钙钛矿阴极材料。为简化电池制备工艺,避免GDC阻隔
粮食干燥是粮食储藏前的重要环节,是确保粮食安全的重要手段之一。合理的干燥方法,不仅能确保粮食的干燥品质,增加其附加值,同时也能延长粮食的储存期。粮食干燥是一项高能耗作业,传统的干燥方法是通过燃煤产生热量进行干燥。在当今节能环保的能源发展趋势下,研发高效节能的粮食干燥新技术,对降低干燥能耗、减少污染物排放具有重要的意义和广阔的工程应用前景。为此,本文设计了一种新型高效热泵谷物干燥系统,并研制了与该系