论文部分内容阅读
随着汽车制造业的迅猛发展,汽车驾驶技能越来越普及,现代车辆技术也在快速发展,驾驶者对车辆转向操作系统的安全要求也再逐步提高。近几年来,一种新的转向系统——电动助力转向系统EPS(Electric Powered Steering)逐步应用起来,其发展速度极其快,因为EPS系统除了拥有很好的操作稳定性以外,还具有节能、环保等优点。EPS系统的工作过程是不同功能的传感器将接收到的各种信号传递给电子控制单元ECU,电子控制单元ECU根据收到的各种信号,确定出合适的扭矩,然后借助驱动电路促使电动机开始运转,这样就实现了汽车的电动助力转向。目前,电动助力转向系统正在逐步取代液压动力转向系统。由于中国内地汽车电子产业相比起全球的汽车电子产业比较落后,国内在EPS系统的研究和产业化方面的进展速度很缓慢,有待进一步开发,因此加快EPS系统设计开发工作对国内汽车零部件产业发展有特别重大的意义。本论文分析了电动助力转向系统的结构和工作原理,还对EPS系统的主要元器件进行了详细的探讨,如何选型是比较关键的问题。设计EPS系统要实现驾驶人员操纵轻便性、路感好、稳定性等目标,为了实现以上的设计需求,有四种控制策略是必不可少的,即助力控制、回正控制、阻尼控制和补偿控制。与此同时,还介绍了EPS系统的控制方式,主要有PID控制、线性二次型最优控制、鲁棒性控制、模糊控制和人工神经网络控制的控制方式。本论文随后对电动助力转向系统进行了硬件设计和软件设计。电动助力转向系统的硬件设计包含了电子控制单元的选择、传感器信号处理电路设计、电动机功率驱动电路设计、继电器控制电路设计、故障驱动电路设计和硬件抗干扰电路设计等,各个电路都对系统有着重要影响。软件设计与硬件设计是相辅相成的关系,电动助力转向系统的控制方法和控制策略都是通过软件设计来实现的,软件设计的好与坏也会对系统功能实现起着重要作用,本论文主要设计的是电动助力转向系统软件方案和关键程序的工作流程。台架试验对电动助力转向系统的理论研究和仿真模型验证起到重要的作用,这些数据是研发EPS产品的前提和基础。真车试验需要消耗大量的人力、物力和财力,采用台架试验获得一些基本参数和算法,为后续真车试验是很有益处的,不仅能缩短试验及研发周期,还能降低直接装车进行真车道路试验的危险性和研究成本。最后本论文介绍了电动助力转向系统台架试验的要求及试验方法,设计了EPS试验台。通过试验台进行了助力特性、回正特性、阻尼特性和可靠性的试验,试验结果都满足了电动助力转向系统的设计要求。