论文部分内容阅读
研究背景和目的:胰岛素抵抗和β细胞功能障碍是糖尿病的两大重要病理基础;这两者的发生发展与线粒体功能障碍密切相关。大量研究表明,胰岛素抵抗的小鼠、1型及2型糖尿病动物和患者均伴有骨骼肌、肝脏和脂肪组织中线粒体氧化磷酸化活性下降,ATP生成减少,线粒体功能障碍。线粒体最主要的功能是合成ATP,线粒体ATP的生成不仅由线粒体呼吸酶如琥珀酸脱氢酶和细胞色素C氧化酶活性以及线粒体膜电位决定,还与线粒体生物合成密切相关。过氧化物酶体增殖物激活受体γ辅激活因子1α(PGC-1α)是调节线粒体生物合成的关键基因;此外,线粒体基因如细胞色素C氧化酶亚单位Ⅰ(COXⅠ)与核基因如β-actin的比值亦可用来表示线粒体DNA的相对含量,间接反映线粒体生物合成。近年来发现,解偶联蛋白2(UCP2)在线粒体呼吸链氧化磷酸化解偶联中起重要作用,是线粒体ATP生成减少的另一重要原因。UCP2通过介导质子跨膜内流,驱散线粒体内膜的H~+梯度,降低线粒体膜电位,使ADP磷酸化为ATP所需的跨膜电位势能减少,进而使ATP生成减少,线粒体功能受损。此外,氧化应激也与线粒体功能障碍密切相关,因为线粒体不仅是活性氧簇产生的主要部位,而且是活性氧簇攻击的首要靶点。超氧化物也可通过刺激UCP2的表达,使质子渗漏作用增强,加剧线粒体功能障碍。我室和国内外研究表明,内源性一氧化氮合酶(NOS)抑制物——非对称性二甲基精氨酸(ADMA)升高在胰岛素抵抗、糖尿病以及糖尿病血管并发症中起重要作用。内源性ADMA不仅可抑制NOS活性,减少一氧化氮(NO)生成;还可使NOS解偶联,促进超氧化物生成。最近有研究报道,外源性NOS抑制剂L-N-硝基精氨酸甲酯(L-NAME)可进一步增加花生四烯酸诱导的大鼠肝细胞线粒体膜电位下降,而用一氧化氮(NO)供体S-亚硝基乙酰青霉胺(SNAP)孵育则相反;神经型NOS(nNOS)缺失的小鼠脑、骨骼肌和心肌组织中细胞色素C氧化酶和琥珀酸脱氢酶的活性均明显降低。由此提示NO在线粒体功能调节中的重要作用。基于ADMA是体内NO合成的主要抑制物、NO与线粒体功能障碍有关以及线粒体功能障碍和ADMA在糖尿病中的重要作用,我们推测ADMA很可能通过抑制NOS活性,降低NO生成或增加氧自由基生成,干扰线粒体功能,促进糖尿病及其血管并发症的发生、发展。因此,本课题以糖尿病大鼠肝脏和培养的大鼠肝细胞系(H4IIE)作为研究对象,探讨ADMA在糖尿病大鼠肝脏线粒体功能障碍中的作用;为阐明糖尿病的发病机制提供新的实验证据,为糖尿病临床防治开拓新思路。方法:①动物实验:采用一次性腹腔注射大剂量链脲佐菌素(60mg/kg)诱导1型糖尿病大鼠模型;采用高脂饲养4周加小剂量链脲佐菌素(35mg/kg)腹腔注射的方法制备2型糖尿病大鼠模型,继续喂养8周后,检测两型糖尿病大鼠的血糖以及2型糖尿病大鼠血中胰岛素水平和胰岛素敏感性指数等来评价糖尿病模型;用高效液相法检测血清ADMA浓度;用比色法测定糖尿病大鼠肝脏中线粒体琥珀酸脱氢酶及细胞色素C氧化酶活性,荧光分光光度法检测线粒体膜电位,生物发光法测定ATP含量等指标来评价线粒体功能;并对血清ADMA水平与反映线粒体功能的四个指标进行相关性分析。用逆转录-聚合酶链反应(RT-PCR)测定肝脏PGC-1α基因的mRNA水平及用PCR方法检测线粒体基因COXⅠ与核基因β-actin的拷贝数比值来反映线粒体的生物合成;用硫代巴比妥酸法测定大鼠肝脏丙二醛(MDA)含量及用黄嘌呤氧化酶法检测肝脏超氧化物歧化酶(SOD)活性以反映体内脂质过氧化及抗氧化水平;用硝酸还原酶法检测大鼠肝脏NO含量;用比色法测定肝脏NOS活性;②细胞实验:采用外源性ADMA(30μmol/L)孵育大鼠肝细胞系H4IIE细胞48小时后,观察ADMA对细胞线粒体功能和线粒体生物合成的影响;此外,还用RT-PCR测定解偶联蛋白2(UCP2)基因的转录水平,并检测细胞NO含量、NOS活性,MDA水平以及SOD活性;以探讨ADMA引起线粒体功能障碍的可能机制。结果:①动物实验表明,链脲佐菌素(60 mg/kg)诱导的1型糖尿病大鼠血糖水平明显升高;高脂饲养加链脲佐菌素(35 mg/kg)诱导的2型糖尿病大鼠血糖、胰岛素水平显著升高,胰岛素敏感性指数明显降低,表明1型及2型糖尿病大鼠模型建立成功。饲养8周后,1型及2型糖尿病大鼠血清内源性ADMA浓度显著升高(P<0.01),并伴有肝脏线粒体琥珀酸脱氢酶(P<0.01)及细胞色素C氧化酶活性(P<0.05)明显下降,线粒体膜电位降低(P<0.05),ATP生成减少(P<0.01);经相关性分析发现,血清ADMA浓度与反映线粒体功能的四个指标呈显著负相关(P<0.05)。此外,肝中脂质过氧化产物MDA含量明显增加,SOD活性显著下降(P<0.01);肝脏NO含量及NOS活性明显降低(P<0.01)。②细胞实验发现,用1~30μmol/L ADMA孵育大鼠肝细胞H4IIE 12~48h,呈剂量和时间依赖性降低细胞线粒体琥珀酸脱氢酶活性,尤其以30μmol/L ADMA孵育细胞48 h时酶活性降低最明显。因此,在后续的实验中,我们采用30μmol/L ADMA孵育H4IIE细胞48 h,结果显示ADMA显著抑制细胞线粒体琥珀酸脱氢酶和细胞色素C氧化酶活性、降低线粒体膜电位、减少ATP生成,并上调UCP2的mRNA表达;另外,ADMA也下调PGC-1α的mRNA水平,减少线粒体DNA含量,抑制线粒体生物合成。此外,ADMA还抑制细胞NOS活性,减少NO生成,并升高细胞培养液中脂质过氧化产物MDA的含量、降低SOD活性。30μmol/L的L-NAME具有与ADMA类似的作用;而用NO供体硝普钠或抗氧化剂PDTC预孵育1h可对抗ADMA所致的上述作用。结论:本研究结果表明①1型和2型糖尿病大鼠肝脏线粒体功能障碍与血清内源性ADMA浓度升高密切相关;②用外源性ADMA孵育培养的大鼠肝细胞,可直接引起线粒体功能障碍;③ADMA导致线粒体功能障碍可能与减少NO生成,增加氧化应激;上调UCP2的转录表达;下调PGC-1αmRNA水平,抑制线粒体生物合成等有关。