论文部分内容阅读
在宽带收发架构中,基于直接下转换原理的零中频架构具有模拟电路结构简洁,功耗低,成本低等优势。但是由于自身结构和模拟器件带来的缺陷,限制了零中频结构的性能,由于支路不匹配等造成的I/Q(In-phase/quadrature)不平衡是最主要的原因之一。对于宽带多通道收发器,其I/Q不平衡将会在接收频带内随着频率变化,被称为频率相关性I/Q不平衡,同时随着带宽的增加I/Q不平衡度也会进一步恶化,此时维持I/Q平衡以及实现合理的镜像抑制水平将变得更加复杂和困难。随着雷达收发机朝着宽带/超宽带的方向发展,因此解决频率相关性I/Q不平衡变得越来越重要。本文针对I/Q不平衡引入了性能良好的补偿技术并完成了校准方案的设计和实现。在完成深入的理论研究后,本文对频率无关和频率相关性I/Q不平衡建立模型,针对窄带频率无关性I/Q不平衡设计了估计补偿方案,并将这种估计方法运用到一种宽带I/Q不平衡校准技术中,它是利用发送训练信号进行宽带I/Q不平衡误差估计并完成校准滤波器设计。为了解决这种校准方法无法消除宽带信号带内幅相起伏的问题,本文研究了一种通过最小二乘算法构建代价函数来建立补偿矩阵,完成I/Q不平衡补偿以及信道均衡的联合校准方法。在对最小二乘算法进行深入研究后,为了提高补偿方法的实时性,本文基于随机信号的某些二阶统计特性建立了一种“盲”自适应I/Q不平衡补偿滤波器,这种自适应滤波方案可以对信号的I/Q不平衡进行实时校准,并且无需利用训练信号。对宽/窄带I/Q不平衡补偿方法都进行了性能仿真验证,在仿真软件MATLAB中分别完成针对超宽带线性调频信号(Linear frequency modulation,LFM)、多音正弦信号等各种操作场景的仿真。仿真结果显示了补偿方法的镜像抑制性能良好,根据仿真结果分析了每种补偿方法在实际应用中的优势和限制。本文设计并搭建了超宽带零中频接收系统,完成了两种宽带I/Q不平衡的补偿方案的设计与实现。针对2~3GHz频段内的超宽带信号设计了高速数据采集方案,完成补偿参数的提取,最后完成在FPGA内校准的RTL实现。根据最后的测试结果,两种宽带I/Q不平衡校准技术可以分别实现35dB和50dB以上的全带宽镜像抑制。