【摘 要】
:
论文以超低轨卫星为研究对象,相较于传统卫星,其所处的轨道高度属于热层与外层大气的空间,在轨运行时受到的气动干扰力矩相对传统中高轨卫星数值偏高,对于姿态控制系统设计来说不容忽视。除此之外,超低轨代表着卫星在执行对地某固定目标侦察时其过顶时间较短,因此要求超低轨卫星具有快速机动能力。为了解决以上问题,增强超低轨卫星的姿控系统跟踪精度、加强卫星快速机动能力,论文围绕不确定性较大的干扰力矩进行观测并补偿,
论文部分内容阅读
论文以超低轨卫星为研究对象,相较于传统卫星,其所处的轨道高度属于热层与外层大气的空间,在轨运行时受到的气动干扰力矩相对传统中高轨卫星数值偏高,对于姿态控制系统设计来说不容忽视。除此之外,超低轨代表着卫星在执行对地某固定目标侦察时其过顶时间较短,因此要求超低轨卫星具有快速机动能力。为了解决以上问题,增强超低轨卫星的姿控系统跟踪精度、加强卫星快速机动能力,论文围绕不确定性较大的干扰力矩进行观测并补偿,同时进行合理的快速姿态控制方法设计,共研究了以下三部分内容:设计了一种基于扰动滑模观测器的快速姿态控制方法。针对外界气动干扰建模使仿真中外界干扰的设置增加合理性;设计三角函数型路径规划方法保证卫星大角度姿态机动过程的快速性,设计扰动滑模观测器对卫星所受外界气动干扰进行观测,设计带有干扰估计补偿量的改进型PD控制律保证超低轨卫星姿态控制系统稳定性。设计了一种基于干扰观测器的超低轨卫星有限时间姿态控制方法。针对观测器的观测效果进行深入探讨,设计了一类偏差纠正函数中带有低阶幂次项的扰动观测器;设计了一种具有有限时间收敛特性的扰动观测器,两种观测器都在估计速度与估计精度方面有所提升。为实现卫星实际姿态快速跟踪到设计路径,设计了一种终端滑模控制方法。提出了一种基于并行学习策略的扰动与故障估计及补偿方法。提供了一类扰动估计的新思路,将并行学习自适应辨识策略引入干扰估计,用辨识模块代替观测模块;把外界扰动视为系统未知动力学部分,并考虑了执行机构存在乘性故障与加性故障的情况,基于并行学习策略对干扰与故障同时进行估计与补偿,为保证闭环系统稳定设计了一种带有扰动和故障估计值的改进型滑模控制器。
其他文献
本文针对一类具有HollingⅣ功能性反应函数的捕食系统,应用微分方程稳定性和定性理论、重合度理论,证明了系统正平衡点全局稳定性,极限环的存在唯一性和周期解的存在性。主要内容如下:第一部分,当食饵种群密度制约为一般函数时,分别研究了捕食者有密度制约和无密度制约的HollingⅣ型的捕食系统。利用根存在性定理,得到了正平衡点的存在条件。通过定性分析方法,给出平衡点的局部稳定性。运用Dulac函数法和
随着航天技术的发展,空间机械臂在载荷抓取投放、在轨装配、在轨维护等方面的应用越来越广泛,对机械臂的绝对定位精度要求也越来越高。空间机械臂在发射过程中的环境变化、震动冲击,在轨长时间服务后杆件形变、关节间紧密性改变和关节在轨更换等因素均会造成定位精度下降。进行空间机械臂运动学参数的在轨标定,提高其末端定位精度,对机械臂精确完成太空任务具有重要意义。本文以七自由度空间机械臂为研究对象,使用MDH法建立
尾座式飞机具备固定翼飞机和旋翼机的优点,具有垂直起降、飞行速度快、续航时间长等特点,应用前景广阔。然而,尾座式飞机存在六自由度动力学强耦合、欧拉角奇异等问题,导致控制器设计较为困难。本文以尾座式无人机为研究对象,首先根据尾座式无人机构型发展设计了尾座式无人机的构型并测量相关参数。分析了尾座式无人机的飞行原理,建立了数学模型。最后设计了尾座式无人机飞行控制方法,并通过飞行验证可飞行控制器。主要工作包
随着人类对于太空的探索逐渐深入,各类航天器相关的技术也在逐步发展,对于航天器的要求也在不断提高,随之而来的便是对于航天器太阳翼技术要求的提升。太阳翼可以在航天器进行空间工作时为其提供能量,其对航天器空间任务的成败有着较大的影响。为了使得太阳翼在空间工作时能够正常展开,应提前对其进行地面展开试验,而展开架导轨的相关参数对于太阳翼地面展开试验极为重要。本课题所研制的太阳翼地面展开试验导轨参数测量系统可
随着《“十四五”国家科技创新规划》的发布,深空探测领域成为我国实现航天强国战略的重要组成部分,也是标志性领域之一。我国未来小天体探测器将采用圆形柔性太阳翼,该太阳翼在探测器发射阶段处于收拢压紧状态,探测器入轨后,太阳翼即按要求顺次解锁压紧释放装置,只有在太阳帆板正常的展开和锁定后,航天才能正常工作,所以太阳帆板的正常展开与否是重要指标之一。为此,本文针对圆形薄膜太阳翼的地面零重力展开试验系统的等效
能够水平起降的组合动力空天飞行器相比于传统火箭发射窗口增大,可重复使用的特性也降低了发射成本,具备战时执行紧急入轨的能力;同时,组合动力空天飞行器还可以作为高超声速飞机使用,能够对于高威胁区域进行抵近快速侦察,还可以携带武器执行快速打击任务。因此,组合动力空天飞行器近年来越来越受到世界各国的重视。爬升段是组合动力空天飞行器能否成功执行后续任务的关键,轨迹设计与优化是开展后续跟踪控制的基础。同时,由
为了满足人类对于未来空间探索的需求,适应愈加复杂、繁重的空间探测和运输任务,世界各大国正在大力发展运载火箭的相关技术。由于现代空间运输任务对运载火箭工具提出了更高的要求,故相关技术的研究已成为航空航天的一个重要研究内容。运载火箭按照发动机的类型可分为固体或者液体火箭,固体火箭凭自身优势成为运载火箭的一个重要分支,为了使固体运载火箭的制导系统满足更加复杂的发射任务,拥有更高的入轨精度,需要对固体运载
变质心控制技术通过改变安装于飞行器内部质量块的位置实现系统质心位置的改变,使作用在飞行器上的合外力相对于飞行器系统质心的位置矢量发生变化,从而改变合外力相对于飞行器质心的力矩实现姿态机动。变质心控制技术在上个世纪便被提出,并得到了研究人员的充分理论研究,在高速再入飞行器滚转控制方面具有广阔的应用前景。国内研究起步较晚,大都停留在建模和仿真阶段,因此开发出验证样机是变质心技术工程应用的基础。四旋翼成
随着人类航天技术水平的不断提高,航天器上的部件和所应用的材料越来越多样化,与此同时空间碎片的组成与结构也变的越来越复杂化。当航天器发生爆炸解体时,质地较软又具有热塑性的高分子材料,很可能与微小的金属颗粒以及较大的片状金属碎片结合成为一种嵌套结构的空间碎片。这种空间碎片具有较为独特的高速撞击扩散特性,对航天器具有特殊的威胁,因此,本文设计了一种嵌套结构弹丸对该空间碎片进行模拟,通过大量数值仿真来获得
随着微纳卫星需求量不断增长、任务复杂度不断增加以及研制周期的持续缩短,传统定制化的卫星地面测试系统已渐渐力不从心,开始逐渐退出历史舞台。随之就要求当前的微纳卫星地面综合测试系统在保证基本的稳定、可靠、安全的实现批量化、并行化测试的同时,更具通用性、易用性以及自动化。所以本文将重点研究批量微纳卫星地面并行自动化测试的应用技术,具体主要研究内容如下:针对需求,提出一体化、可扩展、可裁剪、开放式的系统性