论文部分内容阅读
线性系统理论中考虑的极点配置问题,通常指的是闭环极点配置在复平面中事先给定的位置,即精确极点配置。然而,由于模型的不精确和各种扰动的存在,使得这样的一种精确极点配置不可能得到真正的实现。事实上,对许多实际系统,只要将闭环系统的极点配置在复平面上的一个适当的区域中,就可以保证系统具有一定的动态和稳定性能。 本课题研究的目的是去设计一个H∞鲁棒控制器,使系统的闭环极点都被控制在一个特定的区域,那样系统的暂态响应可以被更好的控制和调整。使系统的性能达到我们所期望的要求。 本文的研究内容主要包括以下几个方面: (1)用平移平面的方法,根据给定系统鲁棒性的要求,把系统的闭环极点限定在一定的区域内,使得系统既满足系统的鲁棒性要求,又使闭环极点满足在一定的区域内,并求出所期望的控制器。 (2)用非传统的方法,如次优控制器方法,使得系统既满足系统的鲁棒性要求,又使闭环极点满足在一定的区域内,并求出所期望的控制器。 (3)通过平移系统的极点,看对系统的性能的影响。 (4)根据系统的鲁棒性的特性,分析在给定系统的范数的条件下,所需要平移系统极点的距离,给出我们所期望的控制器的计算方法。 本文中由仿真得到的结论反映了鲁棒控制下的极点配置的方法和应用特性,为鲁棒控制下的极点配置在系统中的进一步应用提供了理论基础;鲁棒控制下的极点配置的计算方法对优化系统性能、鲁棒控制器的设计和研究具有一定的理论价值。