论文部分内容阅读
废铅酸蓄电池资源循环是国民经济的重要组成部分,对铅酸蓄电池破碎分选得到废铅膏进行预脱硫处理,再低温熔炼是一条公认的铅清洁回收工艺。传统的预脱硫反应在间歇搅拌釜中进行,凭借搅拌产生的水力剪切作用来破除反应物硫酸铅颗粒表面包裹的脱硫产物层,尽管反应器结构简单,但存在转化率低,脱硫不彻底的问题,致使低温熔炼无法进行。本文提出铅膏预脱硫“表面更新”模式,在搅拌釜中添加粒子作为碰撞研磨介质,反应浆液与粒子在反应器内旋转,对反应颗粒进行碰撞、研磨,即时破坏产物碳酸铅包裹层,实现反应颗粒表面更新。构建了实验系统,研究了碳酸钠在表面更新实验系统中的铅膏脱硫性能。实验表明,在转速500r/min、温度50℃、浆液浓度30%-60%、摩尔比n(Na2CO3):n(PbSO4)=1.1:1条件下,反应40分钟,铅膏含硫率<0.5%,满足低温熔炼的要求。为适应工业大规模生产,构建内循环研磨脱硫系统,在铅膏浆也罐内设置2个研磨脱硫器,脱硫器下部配置高速搅拌浆作为铅膏浆液循环流经脱硫器的动力源,脱硫器内设置螺旋导流板,并填充粒子作为研磨介质。采用(NH4)2CO3做脱硫剂,实验研究了内循环研磨脱硫系统的铅膏脱硫性能,在转速600r/min、温度40℃、浆液浓度40%-60%、摩尔比n(NH4)2CO3):n(PbSO4)=1.1:1条件下,反应30分钟,反应后固体含硫率小于0.3%。重金属杂质的净化对铅膏脱硫副产物的综合利用至关重要,采用硫化铵沉淀法净化脱硫副产物硫酸铵溶液中的重金属。实验研究了过量的脱硫剂碳酸铵对重金属净化的影响,同时实验了温度、pH和硫化铵添加量对重金属去除的影响。C (Mn+):C ((NH4)2S)=1:2.5、25℃-35℃、 pH=8-9,反应20min,重金属杂质总量降低到0.94mg/L以下,满足国家废水中重金属含量标准。